-
Notifications
You must be signed in to change notification settings - Fork 10
/
gmphd.py
359 lines (308 loc) · 13.3 KB
/
gmphd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import numpy as np
import numpy.linalg as lin
from typing import List, Dict, Any
def multivariate_gaussian(x: np.ndarray, m: np.ndarray, P: np.ndarray) -> float:
"""
Multivatiate Gaussian Distribution
:param x: vector
:param m: distribution mean vector
:param P: Covariance matrix
:return: probability density function at x
"""
first_part = 1 / (((2 * np.pi) ** (x.size / 2.0)) * (lin.det(P) ** 0.5))
second_part = -0.5 * (x - m) @ lin.inv(P) @ (x - m)
return first_part * np.exp(second_part)
def multivariate_gaussian_predefined_det_and_inv(x: np.ndarray, m: np.ndarray, detP: np.float64,
invP: np.ndarray) -> float:
"""
Multivariate Gaussian Distribution with provided determinant and inverse of the Gaussian mixture.
Useful in case when we already have precalculted determinant and inverse of the covariance matrix.
:param x: vector
:param m: distribution mean
:param detP: determinant of the covariance matrix
:param invP: inverse of the covariance matrix
:return: probability density function at x
"""
first_part = 1 / (((2 * np.pi) ** (x.size / 2.0)) * (detP ** 0.5))
second_part = -0.5 * (x - m) @ invP @ (x - m)
return first_part * np.exp(second_part)
def clutter_intensity_function(z: np.ndarray, lc: int, surveillance_region: np.ndarray):
"""
Clutter intensity function, with the uniform distribution through the surveillance region, pg. 8
in "Bayesian Multiple Target Filtering Using Random Finite Sets" by Vo, Vo, Clark.
:param z:
:param lc: average number of false detections per time step
:param surveillance_region: np.ndarray of shape (number_dimensions, 2) giving the range(min and max) for each
dimension
"""
if surveillance_region[0][0] <= z[0] <= surveillance_region[0][1] and surveillance_region[1][0] <= z[1] <= \
surveillance_region[1][1]:
# example in two dimensions: lc/((xmax - xmin)*(ymax-ymin))
return lc / ((surveillance_region[0][1] - surveillance_region[0][0]) * (
surveillance_region[1][1] - surveillance_region[1][0]))
else:
return 0.0
class GaussianMixture:
def __init__(self, w: List[np.float64], m: List[np.ndarray], P: List[np.ndarray]):
"""
The Gaussian mixture class
:param w: list of scalar weights
:param m: list of np.ndarray means
:param P: list of np.ndarray covariance matrices
Note that constructor creates detP and invP variables which can be used instead of P list, for covariance matrix
determinant and inverse. These lists cen be initialized with assign_determinant_and_inverse function, and
it is useful in case we already have precalculated determinant and inverse earlier.
"""
self.w = w
self.m = m
self.P = P
self.detP = None
self.invP = None
def set_covariance_determinant_and_inverse_list(self, detP: List[np.float64], invP: List[np.ndarray]):
"""
For each Gaussian component, provide the determinant and the covariance inverse
:param detP: list of determinants for each Gaussian component in the mixture
:param invP: list of covariance inverses for each Gaussian component in the mixture
"""
self.detP = detP
self.invP = invP
def mixture_value(self, x: np.ndarray):
"""
Gaussian Mixture function for the given vector x
"""
sum = 0
if self.detP is None:
for i in range(len(self.w)):
sum += self.w[i] * multivariate_gaussian(x, self.m[i], self.P[i])
else:
for i in range(len(self.w)):
sum += self.w[i] * multivariate_gaussian_predefined_det_and_inv(x, self.m[i], self.detP[i],
self.invP[i])
return sum
def mixture_single_component_value(self, x: np.ndarray, i: int) -> float:
"""
Single Gaussian Mixture component value for the given vector
:param x: vector
:param i: index of the component
:returns: probability density function at x, multiplied with the component weght at the index i
"""
if self.detP is None:
return self.w[i] * multivariate_gaussian(x, self.m[i], self.P[i])
else:
return self.w[i] * multivariate_gaussian_predefined_det_and_inv(x, self.m[i], self.detP[i], self.invP[i])
def mixture_component_values_list(self, x: np.ndarray) -> List[float]:
"""
Sometimes it is useful to have value of each component multiplied with its weight
:param x: vector
:return: List[np.float64]:
List of components values at x, multiplied with their weight.
"""
val = []
if self.detP is None:
for i in range(len(self.w)):
val.append(self.w[i] * multivariate_gaussian(x, self.m[i], self.P[i]))
else:
for i in range(len(self.w)):
val.append(
self.w[i] * multivariate_gaussian_predefined_det_and_inv(x, self.m[i], self.detP[i], self.invP[i]))
return val
def copy(self):
w = self.w.copy()
m = []
P = []
for m1 in self.m:
m.append(m1.copy())
for P1 in self.P:
P.append(P1.copy())
return GaussianMixture(w, m, P)
def get_matrices_inverses(P_list: List[np.ndarray]) -> List[np.ndarray]:
inverse_P_list = []
for P in P_list:
inverse_P_list.append(lin.inv(P))
return inverse_P_list
def get_matrices_determinants(P_list: List[np.ndarray]) -> List[float]:
"""
:param P_list: list of covariance matrices
:return:
"""
detP = []
for P in P_list:
detP.append(lin.det(P))
return detP
def thinning_and_displacement(v: GaussianMixture, p, F: np.ndarray, Q: np.ndarray):
"""
For the given Gaussian mixture v, perform thinning with probability P and displacement with N(x; F @ x_prev, Q)
See https://ieeexplore.ieee.org/document/7202905 for details
"""
w = []
m = []
P = []
for weight in v.w:
w.append(weight * p)
for mean in v.m:
m.append(F @ mean)
for cov_matrix in v.P:
P.append(Q + F @ cov_matrix @ F.T)
return GaussianMixture(w, m, P)
class GmphdFilter:
def __init__(self, model: Dict[str, Any]):
"""
The Gaussian Mixture Probability Hypothesis Density filter implementation.
"The Gaussian mixture probability hypothesis density filter" by Vo and Ma.
https://ieeexplore.ieee.org/document/1710358
We assume linear transition and measurement model in the
following form
x[k] = Fx[k-1] + w[k-1]
z[k] = Hx[k] + v[k]
Inputs:
- model: dictionary which contains the following elements(keys are strings):
F: state transition matrix
H: measurement matrix
Q: process noise covariance matrix(of variable w[k]).
R: measurement noise covariance matrix(of variable v[k]).
p_d: probability of target detection
p_s: probability of target survival
Spawning model, see pg. 5. of the paper. It's a Gaussian Mixture conditioned on state
F_spawn: d_spawn: Q_spawn: w_spawn: lists of ndarray objects with the same length, see pg. 5
clutt_int_fun: reference to clutter intensity function, gets only one argument, which is the current measure
T: U: Jmax: Pruning parameters, see pg. 7.
birth_GM: The Gaussian Mixture of the birth intensity
"""
# to do: dtype, copy, improve performance
self.p_s = model['p_s']
self.F = model['F']
self.Q = model['Q']
self.w_spawn = model['w_spawn']
self.F_spawn = model['F_spawn']
self.d_spawn = model['d_spawn']
self.Q_spawn = model['Q_spawn']
self.birth_GM = model['birth_GM']
self.p_d = model['p_d']
self.H = model['H']
self.R = model['R']
self.clutter_density_func = model['clutt_int_fun']
self.T = model['T']
self.U = model['U']
self.Jmax = model['Jmax']
def spawn_mixture(self, v: GaussianMixture) -> GaussianMixture:
"""
Spawning targets in prediction step
"""
w = []
m = []
P = []
for i, w_v in enumerate(v.w):
for j, w_spawn in enumerate(self.w_spawn):
w.append(w_v * w_spawn)
m.append(self.F_spawn[j] @ v.m[i] + self.d_spawn[j])
P.append(self.Q_spawn[j] + self.F_spawn[j] @ v.P[i] @ self.F_spawn[j].T)
return GaussianMixture(w, m, P)
def prediction(self, v: GaussianMixture) -> GaussianMixture:
"""
Prediction step of the GMPHD filter
Inputs:
- v: Gaussian mixture of the previous step
"""
# v_pred = v_s + v_spawn + v_new_born
birth_copy = self.birth_GM.copy()
# targets that survived v_s:
v_s = thinning_and_displacement(v, self.p_s, self.F, self.Q)
# spawning targets
v_spawn = self.spawn_mixture(v)
# final phd of prediction
return GaussianMixture(v_s.w + v_spawn.w + birth_copy.w, v_s.m + v_spawn.m + birth_copy.m,
v_s.P + v_spawn.P + birth_copy.P)
def correction(self, v: GaussianMixture, Z: List[np.ndarray]) -> GaussianMixture:
"""
Correction step of the GMPHD filter
Inputs:
- v: Gaussian mixture obtained from the prediction step
- Z: Measurement set, containing set of observations
"""
v_residual = thinning_and_displacement(v, self.p_d, self.H, self.R)
detP = get_matrices_determinants(v_residual.P)
invP = get_matrices_inverses(v_residual.P)
v_residual.set_covariance_determinant_and_inverse_list(detP, invP)
K = []
P_kk = []
for i in range(len(v_residual.w)):
k = v.P[i] @ self.H.T @ invP[i]
K.append(k)
P_kk.append(v.P[i] - k @ self.H @ v.P[i])
v_copy = v.copy()
w = (np.array(v_copy.w) * (1 - self.p_d)).tolist()
m = v_copy.m
P = v_copy.P
for z in Z:
values = v_residual.mixture_component_values_list(z)
normalization_factor = np.sum(values) + self.clutter_density_func(z)
for i in range(len(v_residual.w)):
w.append(values[i] / normalization_factor)
m.append(v.m[i] + K[i] @ (z - v_residual.m[i]))
P.append(P_kk[i].copy())
return GaussianMixture(w, m, P)
def pruning(self, v: GaussianMixture) -> GaussianMixture:
"""
See https://ieeexplore.ieee.org/document/7202905 for details
"""
I = (np.array(v.w) > self.T).nonzero()[0]
w = [v.w[i] for i in I]
m = [v.m[i] for i in I]
P = [v.P[i] for i in I]
v = GaussianMixture(w, m, P)
I = (np.array(v.w) > self.T).nonzero()[0].tolist()
invP = get_matrices_inverses(v.P)
vw = np.array(v.w)
vm = np.array(v.m)
w = []
m = []
P = []
while len(I) > 0:
j = I[0]
for i in I:
if vw[i] > vw[j]:
j = i
L = []
for i in I:
if (vm[i] - vm[j]) @ invP[i] @ (vm[i] - vm[j]) <= self.U:
L.append(i)
w_new = np.sum(vw[L])
m_new = np.sum((vw[L] * vm[L].T).T, axis=0) / w_new
P_new = np.zeros((m_new.shape[0], m_new.shape[0]))
for i in L:
P_new += vw[i] * (v.P[i] + np.outer(m_new - vm[i], m_new - vm[i]))
P_new /= w_new
w.append(w_new)
m.append(m_new)
P.append(P_new)
I = [i for i in I if i not in L]
if len(w) > self.Jmax:
L = np.array(w).argsort()[-self.Jmax:]
w = [w[i] for i in L]
m = [m[i] for i in L]
P = [P[i] for i in L]
return GaussianMixture(w, m, P)
def state_estimation(self, v: GaussianMixture) -> List[np.ndarray]:
X = []
for i in range(len(v.w)):
if v.w[i] >= 0.5:
for j in range(int(np.round(v.w[i]))):
X.append(v.m[i])
return X
def filter_data(self, Z: List[List[np.ndarray]]) -> List[List[np.ndarray]]:
"""
Given the list of collections of measurements for each time step, perform filtering and return the
estimated sets of tracks for each step.
:param Z: list of observations(measurements) for each time step
:return X:
list of estimated track sets for each time step
"""
X = []
v = GaussianMixture([], [], [])
for z in Z:
v = self.prediction(v)
v = self.correction(v, z)
v = self.pruning(v)
x = self.state_estimation(v)
X.append(x)
return X