forked from ikostrikov/pytorch-a2c-ppo-acktr-gail
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
37 lines (27 loc) · 1.01 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
import torch.nn as nn
# Necessary for my KFAC implementation.
class AddBias(nn.Module):
def __init__(self, bias):
super(AddBias, self).__init__()
self._bias = nn.Parameter(bias.unsqueeze(1))
def forward(self, x):
if x.dim() == 2:
bias = self._bias.t().view(1, -1)
else:
bias = self._bias.t().view(1, -1, 1, 1)
return x + bias
def init(module, weight_init, bias_init, gain=1):
weight_init(module.weight.data, gain=gain)
bias_init(module.bias.data)
return module
# https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py#L87
def init_normc_(weight, gain=1):
weight.normal_(0, 1)
weight *= gain / torch.sqrt(weight.pow(2).sum(1, keepdim=True))
def update_current_obs(obs, current_obs, obs_shape, num_stack):
shape_dim0 = obs_shape[0]
obs = torch.from_numpy(obs).float()
if num_stack > 1:
current_obs[:, :-shape_dim0] = current_obs[:, shape_dim0:]
current_obs[:, -shape_dim0:] = obs