Skip to content

Latest commit

 

History

History
267 lines (235 loc) · 10.2 KB

101.adoc

File metadata and controls

267 lines (235 loc) · 10.2 KB

Gremlin Cheat Sheet 101

Read-Only Traversals

Initial Lookups

Steps Meaning

V()

get all vertices in the graph

E()

get all edges in the graph

V().hasLabel(label1, label2, …​)

get all vertices with the specified labels

V().has(label, key, value)

get all vertices with the specified label and the property key matching the provided value

V(1)

get the vertex with the id 1

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V()
==>v[1]
==>v[2]
==>v[3]
==>v[4]
==>v[5]
==>v[6]
gremlin> g.V().hasLabel("person")
==>v[1]
==>v[2]
==>v[4]
==>v[6]
gremlin> g.V().has("person","name","marko")
==>v[1]
gremlin> g.V(1)
==>v[1]

Access Properties

Steps Meaning

properties(key1, key2, …​)

get all specified properties for the current element

values(key1, key2, …​)

get all specified property values for the current element

valueMap(key1, key2, …​)

get all specified property values for the current element as a map

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V().hasLabel("person").properties("name")
==>vp[name->marko]
==>vp[name->vadas]
==>vp[name->josh]
==>vp[name->peter]
gremlin> g.V().hasLabel("person").values("name")
==>marko
==>vadas
==>josh
==>peter
gremlin> g.V().hasLabel("person").valueMap("name","age")
==>[name:[marko],age:[29]]
==>[name:[vadas],age:[27]]
==>[name:[josh],age:[32]]
==>[name:[peter],age:[35]]

Traversing the Graph

Steps Meaning

out(label1, label2, …​)

get all adjacent vertices connected by outgoing edges with the specified labels

in(label1, label2, …​)

get all adjacent vertices connected by incoming edges with the specified labels

outE(label1, label2, …​)

get all outgoing edges with the specified labels

inE(label1, label2, …​)

get all incoming edges with the specified labels

both(label1, label2, …​)

get all adjacent vertices connected by an edge with the specified labels

bothE(label1, label2, …​).otherV()

traverse to all incident edges with the specified labels and then to the respective other vertices

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V(1).outE("created")
==>e[9][1-created->3]
gremlin> g.V(1).out("created")
==>v[3]
gremlin> g.V().has("software","name","lop").in("created").values("name")
==>marko
==>josh
==>peter

Filters

Steps Meaning

has(key, value)

keep the current element if the specified property has the given value

has(key, predicate)

keep the current element if the specified property matches the given predicate

filter(traversal)

keep the current element if the provided traversal emits a result

not(traversal)

keep the current element if the provided traversal doesn’t emit a result

where(predicate)

keep the current element if it matches the predicate referencing another element

Note
Predicates are used to compare values based on equality, ranges or certain patterns. All TinkerPop predicates are implemented as static methods; a full list of TinkerPop predicates can be found in the JavaDocs for P and TextP.

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V().has("age",29).valueMap("name","age")
==>[name:[marko],age:[29]]
gremlin> g.V().has("age",gt(30)).valueMap("name","age")
==>[name:[josh],age:[32]]
==>[name:[peter],age:[35]]
gremlin> g.V().filter(outE())
==>v[1]
==>v[4]
==>v[6]
gremlin> g.V().not(outE())
==>v[2]
==>v[3]
==>v[5]
gremlin> g.V(1).as("other").
......1>   out("knows").where(gt("other")).by("age").
......2>   valueMap()
==>[name:[josh],age:[32]]

Aggregations

Steps Meaning

store(key)

store the current element in the side-effect with the provided key

aggregate(key)

store all elements held by all current traversers in the side-effect with the provided key

group([key]).by(keySelector)

group all current elements by the provided keySelector; group into a side-effect if a side-effect key was provided, otherwise emit the result immediately

fold()

fold all current elements into a single list

unfold()

unfold the incoming list and continue processing each element individually

count()

count the number of current elements

min()/max()

find the min/max value

sum()

compute the sum of all current values

mean()

compute the mean value of all current values

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V().hasLabel("person").store("x").select("x")
==>[v[1]]
==>[v[1],v[2]]
==>[v[1],v[2],v[4]]
==>[v[1],v[2],v[4],v[6]]
gremlin> g.V().hasLabel("person").aggregate("x").select("x")
==>[v[1],v[2],v[4],v[6]]
==>[v[1],v[2],v[4],v[6]]
==>[v[1],v[2],v[4],v[6]]
==>[v[1],v[2],v[4],v[6]]
gremlin> g.V().group().by(label)
==>[software:[v[3],v[5]],person:[v[1],v[2],v[4],v[6]]]
gremlin> g.V().fold()
==>[v[1],v[2],v[3],v[4],v[5],v[6]]
gremlin> g.V().count()
==>6
gremlin> g.V().fold().count(local)
==>6

Branches

Steps Meaning

union(branch1, branch2, …​)

execute all branches and emit their results

choose(condition, true-branch, false-branch)

if/then/else-based traversal. If the condition matches (yields something), execute the true-branch, otherwise follow the false-branch.

choose(selector).
  option(opt1, traversal).
  option(opt2, traversal).
  option(optN, traversal)

value-based traversal; If an option value matches the value emitted by the selector traversal, the respective option traversal will be executed.

Examples

gremlin> g = TinkerFactory.createModern().traversal()
==>graphtraversalsource[tinkergraph[vertices:6 edges:6], standard]
gremlin> g.V().hasLabel("person").union(out("knows"), count())
==>v[2]
==>v[4]
==>4
gremlin> g.V().hasLabel("person").
......1>   choose(has("age",gt(30)), constant("senior"), constant("junior"))
==>junior
==>junior
==>senior
==>senior
gremlin> g.V().hasLabel("person").values("age").
......1>   union(min(), max(), sum(), mean(), count())
==>27
==>35
==>123
==>30.75
==>4

Mutating Traversals

Steps Meaning

addV(label)

add a new vertex

addE(label).from(source).to(target)

adds a new edge between the two given vertices

property(key, value)

adds or updates the property with the given key

Examples

gremlin> g = TinkerGraph.open().traversal()
==>graphtraversalsource[tinkergraph[vertices:0 edges:0], standard]
gremlin> g.addV('company').
......1>     property('name','datastax').as('ds').
......2>   addV('software').
......3>     property('name','dse graph').as('dse').
......4>   addV('software').
......5>     property('name','tinkerpop').as('tp').
......6>   addE('develops').from('ds').to('dse').
......7>   addE('uses').from('dse').to('tp').
......8>   addE('likes').from('ds').to('tp').iterate()
gremlin> g.V().outE().inV().path().by('name').by(label)
==>[datastax,develops,dse graph]
==>[datastax,likes,tinkerpop]
==>[dse graph,uses,tinkerpop]