-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathserve_utils.py
executable file
·219 lines (186 loc) · 9.56 KB
/
serve_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import json
import os
import pdb
def highlight_entities(splitted_content, cat, item, cName, qids=[]):
if 'id' in item:
if item['id'] in qids:
cName = 'query_entities'
if 'MESH' in item['id'] and cat == 'drug':
_id = item['id'].split('MESH:')[1]
item_url = "http://ctdbase.org/detail.go?type=chem?acc=" + _id
if 'MESH' in item['id'] or 'OMIM' in item['id']:
item_url = "http://ctdbase.org/detail.go?type=disease&acc=" + item['id']
elif 'NCBI:txid' in item['id']:
_id = item['id'].split('NCBI:txid')[1]
item_url = "https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=" + _id
elif 'NCBI:gene' in item['id']:
_id = item['id'].split('NCBI:gene')[1]
item_url = "http://ctdbase.org/detail.go?type=gene&acc=" + _id
else:
return splitted_content
anchor_tag = "<a href='" + item_url + "' target='_blank' class='" + cName + "'>"
# if 'original_name' in item:
# splitted_content[item['start']] = anchor_tag + item['original_name']
# for idx in range(item['start']+1, item['end']-1):
# splitted_content[idx] = ''
# splitted_content[item['end']-1] = "</a>"
# else:
if item['end'] > len(splitted_content): item['end'] = len(splitted_content)
splitted_content[item['start']] = anchor_tag + splitted_content[item['start']]
splitted_content[item['end']-1] = splitted_content[item['end']-1] + "</a>"
return splitted_content
def load_caches(args):
# cache_path = {'covid': args.top100_covid_examples_path, 'google': args.top100_google_examples_path}
cache_path = {'kcw': args.top10_examples_path}
cached_set = {}
for c_key, c_path in cache_path.items():
with open(c_path, 'r') as rf:
cache_res = json.load(rf)
cache_res = cache_res['data']
for k, v in cache_res.items():
cached_set[k] = v
return cached_set
def parse_example(args):
index_example_set = {}
search_examples = {}
inverted_examples = {}
query_entity_ids = {}
# example_path = {'covid': args.examples_path, 'google': args.google_examples_path}
example_path = {'kcw': args.examples_path}
for example_key, e_path in example_path.items():
with open(e_path, 'r') as fp:
examples = json.load(fp)
examples = examples['data']
index_examples = {} # Examples rendered in index page - head question: questions list
# search_examples = {} # Questions rendered in search page - question id: question informations
# inverted_examples = {} # Lookup table to find question id - question lowercased text: question id
# query_entity_ids = {} # Query ids of questions - question id: query id list
for item in examples:
example_id = item['id']
example_content = item['question']
inverted_examples[example_content.lower()] = example_id
if example_key =='covid':
head_question = example_id.split('_')[1:-2]
head_question = ' '.join(head_question)
head_question = head_question[0].upper() + head_question[1:]
elif example_key == 'kcw':
head_question = 'Questions'
else:
head_question = example_id.split('_')[:-1]
head_question = ' '.join(head_question)
head_question = head_question[0].upper() + head_question[1:]
parsed_example = {'id': example_id, 'content': example_content}
highlighted_question = [char for char in example_content]
if 'question_entities' in item.keys():
for q_e_cat, q_e_items in item['question_entities'].items():
for q_e_item in q_e_items:
highlighted_question = highlight_entities(
highlighted_question, q_e_cat, q_e_item, 'query_entities', qids = []
)
if 'id' in q_e_item:
if example_id in query_entity_ids.keys():
query_entity_ids[example_id].append(q_e_item['id'])
else:
query_entity_ids[example_id] = [q_e_item['id']]
if example_id in query_entity_ids.keys():
query_entity_ids[example_id] = list(set(query_entity_ids[example_id]))
highlighted_question = ''.join(highlighted_question)
parsed_example['highlighted'] = highlighted_question
if head_question in index_examples.keys():
index_examples[head_question].append(parsed_example)
# examples_dict[example_id].append(example_dict)
else:
index_examples[head_question] = [parsed_example]
# examples_dict[example_id] = [example_dict]
search_examples[example_id] = parsed_example
index_example_set[example_key] = index_examples
return index_example_set, search_examples, inverted_examples, query_entity_ids
def find_sublist(sl, l):
res = []
sll = len(sl)
for ind in (i for i, e in enumerate(l) if e == sl[0]):
if l[ind:ind+sll] == sl:
res.append((ind, ind+sll))
return res
def out_to_res(out, qids, cat):
res = []
for item in out:
_res = {}
_res['answer'] = item['answer']
_res['score'] = item['score']
_res['context'] = item['context']
_res['title'] = item['title']
splitted_context = [char for char in item['context']]
if 'sent_start' in item.keys() and 'sent_end' in item.keys():
splitted_context[item['sent_start']] = "<em>" + splitted_context[item['sent_start']]
splitted_context[item['sent_end']-1] = splitted_context[item['sent_end']-1] + "</em>"
if 'start_pos' in item.keys() and 'end_pos' in item.keys():
splitted_context[item['start_pos']] = "<span class='answer_span'>" + splitted_context[item['start_pos']]
splitted_context[item['end_pos']-1] = splitted_context[item['end_pos']-1] + "</span>"
if 'metadata' in item.keys():
_res['metadata'] = item['metadata']
if cat == 'denspi':
if 'paragraphs' in _res['metadata']:
for p in _res['metadata']['paragraphs']:
if 'context_entities' in p:
for c_e_cat, c_e_items in p['context_entities'].items():
for c_e_item in c_e_items:
splitted_context = highlight_entities(
splitted_context, c_e_cat, c_e_item, 'context_entities', qids=qids
)
elif cat == 'best':
answer_terms = _res['answer'].split(' ')
lowered_splitted_context = ''.join(splitted_context)
lowered_splitted_context = lowered_splitted_context.lower()
lowered_splitted_context = [char for char in lowered_splitted_context]
for answer_term in answer_terms:
splitted_answer_term = [char for char in answer_term.lower()]
for sub_indices in find_sublist(splitted_answer_term, lowered_splitted_context):
sub_start_pos = sub_indices[0]
sub_end_pos = sub_indices[1]
splitted_context[sub_start_pos] = "<span class='best_entities'>" + splitted_context[sub_start_pos]
splitted_context[sub_end_pos-1] = splitted_context[sub_end_pos-1] + "</span>"
if 'c_start' in item.keys():
if item['c_start'] != 0:
splitted_context[item['c_start']] = '... ' + splitted_context[item['c_start']]
if item['c_end'] != len(splitted_context):
splitted_context[item['c_end']-1] = splitted_context[item['c_end']-1] + " ..."
splitted_context = splitted_context[item['c_start']:item['c_end']]
_res['parsed_text'] = ''.join(splitted_context)
res.append(_res)
return res
def get_cached(search_examples, q_id, query_entity_ids, cached_set):
if q_id in cached_set:
out = cached_set[q_id]
else:
out = None
return jsonify({'res': 'fail'})
query_info = search_examples[q_id]
query = query_info['content']
if q_id in query_entity_ids.keys():
qids = query_entity_ids[q_id]
else:
qids = []
qids = []
if len(out['denspi']) > 3:
out['denspi'] = out['denspi'][:3]
d_res = out_to_res(out['denspi'], qids, 'denspi')
b_res = out_to_res(out['best']['ret'], qids, 'best')
res = {'denspi': d_res, 'best': b_res}
return res, query, query_info
def get_search(inverted_examples, search_examples, query_entity_ids, query, out, best_out):
if query.lower() in inverted_examples.keys():
query_id = inverted_examples[query.lower()]
query_info = search_examples[query_id]
if query_id in query_entity_ids.keys():
qids = query_entity_ids[query_id]
else:
qids = []
else:
query_info = {}
qids = []
qids = []
d_res = out_to_res(out['ret'], qids, 'denspi')
b_res = out_to_res(best_out['ret'], qids, 'best')
res = {'denspi': d_res, 'best': b_res}
return res, query, query_info