From d8cb395380990cc627e6d208e7e9594a24cb8c2e Mon Sep 17 00:00:00 2001 From: Jiaming Yuan Date: Tue, 5 Oct 2021 16:57:08 +0800 Subject: [PATCH] Fix gamma neg log likelihood. (#7275) --- src/metric/elementwise_metric.cu | 7 +++---- tests/python/test_eval_metrics.py | 29 +++++++++++++++++++++++++++++ 2 files changed, 32 insertions(+), 4 deletions(-) diff --git a/src/metric/elementwise_metric.cu b/src/metric/elementwise_metric.cu index 25492bf2c5f8..d8fd9e7fda5b 100644 --- a/src/metric/elementwise_metric.cu +++ b/src/metric/elementwise_metric.cu @@ -309,10 +309,9 @@ struct EvalGammaNLogLik { float constexpr kPsi = 1.0; bst_float theta = -1. / py; bst_float a = kPsi; - // b = -std::log(-theta); - float b = 1.0f; - // c = 1. / kPsi * std::log(y/kPsi) - std::log(y) - common::LogGamma(1. / kPsi); - // = 1.0f * std::log(y) - std::log(y) - 0 = 0 + float b = -std::log(-theta); + // c = 1. / kPsi^2 * std::log(y/kPsi) - std::log(y) - common::LogGamma(1. / kPsi); + // = 1.0f * std::log(y) - std::log(y) - 0 = 0 float c = 0; // general form for exponential family. return -((y * theta - b) / a + c); diff --git a/tests/python/test_eval_metrics.py b/tests/python/test_eval_metrics.py index e54cd71b670b..71a8691fe7f2 100644 --- a/tests/python/test_eval_metrics.py +++ b/tests/python/test_eval_metrics.py @@ -124,6 +124,35 @@ def test_gamma_deviance(self): skl_gamma_dev = mean_gamma_deviance(y, score) np.testing.assert_allclose(gamma_dev, skl_gamma_dev, rtol=1e-6) + @pytest.mark.skipif(**tm.no_sklearn()) + def test_gamma_lik(self) -> None: + import scipy.stats as stats + rng = np.random.default_rng(1994) + n_samples = 32 + n_features = 10 + + X = rng.normal(0, 1, size=n_samples * n_features).reshape((n_samples, n_features)) + + alpha, loc, beta = 5.0, 11.1, 22 + y = stats.gamma.rvs(alpha, loc=loc, scale=beta, size=n_samples, random_state=rng) + reg = xgb.XGBRegressor(tree_method="hist", objective="reg:gamma", n_estimators=64) + reg.fit(X, y, eval_metric="gamma-nloglik", eval_set=[(X, y)]) + + score = reg.predict(X) + + booster = reg.get_booster() + nloglik = float(booster.eval(xgb.DMatrix(X, y)).split(":")[1].split(":")[0]) + + # \beta_i = - (1 / \theta_i a) + # where \theta_i is the canonical parameter + # XGBoost uses the canonical link function of gamma in evaluation function. + # so \theta = - (1.0 / y) + # dispersion is hardcoded as 1.0, so shape (a in scipy parameter) is also 1.0 + beta = - (1.0 / (- (1.0 / y))) # == y + nloglik_stats = -stats.gamma.logpdf(score, a=1.0, scale=beta) + + np.testing.assert_allclose(nloglik, np.mean(nloglik_stats), rtol=1e-3) + def run_roc_auc_binary(self, tree_method, n_samples): import numpy as np from sklearn.datasets import make_classification