forked from HIPS/autograd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfluidsim.py
125 lines (100 loc) · 4.51 KB
/
fluidsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from __future__ import absolute_import
from __future__ import print_function
import autograd.numpy as np
from autograd import value_and_grad
from scipy.optimize import minimize
from scipy.misc import imread
import matplotlib
import matplotlib.pyplot as plt
import os
from builtins import range
# Fluid simulation code based on
# "Real-Time Fluid Dynamics for Games" by Jos Stam
# http://www.intpowertechcorp.com/GDC03.pdf
def project(vx, vy):
"""Project the velocity field to be approximately mass-conserving,
using a few iterations of Gauss-Seidel."""
p = np.zeros(vx.shape)
h = 1.0/vx.shape[0]
div = -0.5 * h * (np.roll(vx, -1, axis=0) - np.roll(vx, 1, axis=0)
+ np.roll(vy, -1, axis=1) - np.roll(vy, 1, axis=1))
for k in range(10):
p = (div + np.roll(p, 1, axis=0) + np.roll(p, -1, axis=0)
+ np.roll(p, 1, axis=1) + np.roll(p, -1, axis=1))/4.0
vx -= 0.5*(np.roll(p, -1, axis=0) - np.roll(p, 1, axis=0))/h
vy -= 0.5*(np.roll(p, -1, axis=1) - np.roll(p, 1, axis=1))/h
return vx, vy
def advect(f, vx, vy):
"""Move field f according to x and y velocities (u and v)
using an implicit Euler integrator."""
rows, cols = f.shape
cell_ys, cell_xs = np.meshgrid(np.arange(rows), np.arange(cols))
center_xs = (cell_xs - vx).ravel()
center_ys = (cell_ys - vy).ravel()
# Compute indices of source cells.
left_ix = np.floor(center_xs).astype(int)
top_ix = np.floor(center_ys).astype(int)
rw = center_xs - left_ix # Relative weight of right-hand cells.
bw = center_ys - top_ix # Relative weight of bottom cells.
left_ix = np.mod(left_ix, rows) # Wrap around edges of simulation.
right_ix = np.mod(left_ix + 1, rows)
top_ix = np.mod(top_ix, cols)
bot_ix = np.mod(top_ix + 1, cols)
# A linearly-weighted sum of the 4 surrounding cells.
flat_f = (1 - rw) * ((1 - bw)*f[left_ix, top_ix] + bw*f[left_ix, bot_ix]) \
+ rw * ((1 - bw)*f[right_ix, top_ix] + bw*f[right_ix, bot_ix])
return np.reshape(flat_f, (rows, cols))
def simulate(vx, vy, smoke, num_time_steps, ax=None, render=False):
print("Running simulation...")
for t in range(num_time_steps):
if ax: plot_matrix(ax, smoke, t, render)
vx_updated = advect(vx, vx, vy)
vy_updated = advect(vy, vx, vy)
vx, vy = project(vx_updated, vy_updated)
smoke = advect(smoke, vx, vy)
if ax: plot_matrix(ax, smoke, num_time_steps, render)
return smoke
def plot_matrix(ax, mat, t, render=False):
plt.cla()
ax.matshow(mat)
ax.set_xticks([])
ax.set_yticks([])
plt.draw()
if render:
matplotlib.image.imsave('step{0:03d}.png'.format(t), mat)
plt.pause(0.001)
if __name__ == '__main__':
simulation_timesteps = 100
print("Loading initial and target states...")
init_smoke = imread('init_smoke.png')[:,:,0]
#target = imread('peace.png')[::2,::2,3]
target = imread('skull.png')[::2,::2]
rows, cols = target.shape
init_dx_and_dy = np.zeros((2, rows, cols)).ravel()
def distance_from_target_image(smoke):
return np.mean((target - smoke)**2)
def convert_param_vector_to_matrices(params):
vx = np.reshape(params[:(rows*cols)], (rows, cols))
vy = np.reshape(params[(rows*cols):], (rows, cols))
return vx, vy
def objective(params):
init_vx, init_vy = convert_param_vector_to_matrices(params)
final_smoke = simulate(init_vx, init_vy, init_smoke, simulation_timesteps)
return distance_from_target_image(final_smoke)
# Specify gradient of objective function using autograd.
objective_with_grad = value_and_grad(objective)
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, frameon=False)
def callback(params):
init_vx, init_vy = convert_param_vector_to_matrices(params)
simulate(init_vx, init_vy, init_smoke, simulation_timesteps, ax)
print("Optimizing initial conditions...")
result = minimize(objective_with_grad, init_dx_and_dy, jac=True, method='CG',
options={'maxiter':25, 'disp':True}, callback=callback)
print("Rendering optimized flow...")
init_vx, init_vy = convert_param_vector_to_matrices(result.x)
simulate(init_vx, init_vy, init_smoke, simulation_timesteps, ax, render=True)
print("Converting frames to an animated GIF...")
os.system("convert -delay 5 -loop 0 step*.png"
" -delay 250 step100.png surprise.gif") # Using imagemagick.
os.system("rm step*.png")