comments | difficulty | edit_url | rating | source | tags | ||||
---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1540 |
第 83 场双周赛 Q3 |
|
设计一个数字容器系统,可以实现以下功能:
- 在系统中给定下标处 插入 或者 替换 一个数字。
- 返回 系统中给定数字的最小下标。
请你实现一个 NumberContainers
类:
NumberContainers()
初始化数字容器系统。void change(int index, int number)
在下标index
处填入number
。如果该下标index
处已经有数字了,那么用number
替换该数字。int find(int number)
返回给定数字number
在系统中的最小下标。如果系统中没有number
,那么返回-1
。
示例:
输入: ["NumberContainers", "find", "change", "change", "change", "change", "find", "change", "find"] [[], [10], [2, 10], [1, 10], [3, 10], [5, 10], [10], [1, 20], [10]] 输出: [null, -1, null, null, null, null, 1, null, 2] 解释: NumberContainers nc = new NumberContainers(); nc.find(10); // 没有数字 10 ,所以返回 -1 。 nc.change(2, 10); // 容器中下标为 2 处填入数字 10 。 nc.change(1, 10); // 容器中下标为 1 处填入数字 10 。 nc.change(3, 10); // 容器中下标为 3 处填入数字 10 。 nc.change(5, 10); // 容器中下标为 5 处填入数字 10 。 nc.find(10); // 数字 10 所在的下标为 1 ,2 ,3 和 5 。因为最小下标为 1 ,所以返回 1 。 nc.change(1, 20); // 容器中下标为 1 处填入数字 20 。注意,下标 1 处之前为 10 ,现在被替换为 20 。 nc.find(10); // 数字 10 所在下标为 2 ,3 和 5 。最小下标为 2 ,所以返回 2 。
提示:
1 <= index, number <= 109
- 调用
change
和find
的 总次数 不超过105
次。
我们用一个哈希表
调用 change
方法时,我们先判断下标是否已经存在,如果存在,我们就将原来的数字从对应的下标集合中删除,然后将新的数字添加到对应的下标集合中。时间复杂度
调用 find
方法时,我们直接返回对应数字的下标集合的第一个元素即可。时间复杂度
空间复杂度
class NumberContainers:
def __init__(self):
self.d = {}
self.g = defaultdict(SortedSet)
def change(self, index: int, number: int) -> None:
if index in self.d:
old_number = self.d[index]
self.g[old_number].remove(index)
self.d[index] = number
self.g[number].add(index)
def find(self, number: int) -> int:
ids = self.g[number]
return ids[0] if ids else -1
# Your NumberContainers object will be instantiated and called as such:
# obj = NumberContainers()
# obj.change(index,number)
# param_2 = obj.find(number)
class NumberContainers {
private Map<Integer, Integer> d = new HashMap<>();
private Map<Integer, TreeSet<Integer>> g = new HashMap<>();
public NumberContainers() {
}
public void change(int index, int number) {
if (d.containsKey(index)) {
int oldNumber = d.get(index);
g.get(oldNumber).remove(index);
}
d.put(index, number);
g.computeIfAbsent(number, k -> new TreeSet<>()).add(index);
}
public int find(int number) {
var ids = g.get(number);
return ids == null || ids.isEmpty() ? -1 : ids.first();
}
}
/**
* Your NumberContainers object will be instantiated and called as such:
* NumberContainers obj = new NumberContainers();
* obj.change(index,number);
* int param_2 = obj.find(number);
*/
class NumberContainers {
public:
NumberContainers() {
}
void change(int index, int number) {
if (d.contains(index)) {
int oldNumber = d[index];
g[oldNumber].erase(index);
if (g[oldNumber].empty()) {
g.erase(oldNumber);
}
}
d[index] = number;
g[number].insert(index);
}
int find(int number) {
return g.contains(number) ? *g[number].begin() : -1;
}
private:
unordered_map<int, int> d;
unordered_map<int, set<int>> g;
};
/**
* Your NumberContainers object will be instantiated and called as such:
* NumberContainers* obj = new NumberContainers();
* obj->change(index,number);
* int param_2 = obj->find(number);
*/
type NumberContainers struct {
d map[int]int
g map[int]*redblacktree.Tree
}
func Constructor() NumberContainers {
return NumberContainers{map[int]int{}, map[int]*redblacktree.Tree{}}
}
func (this *NumberContainers) Change(index int, number int) {
if oldNumber, ok := this.d[index]; ok {
this.g[oldNumber].Remove(index)
}
this.d[index] = number
if _, ok := this.g[number]; !ok {
this.g[number] = redblacktree.NewWithIntComparator()
}
this.g[number].Put(index, nil)
}
func (this *NumberContainers) Find(number int) int {
if ids, ok := this.g[number]; ok && ids.Size() > 0 {
return ids.Left().Key.(int)
}
return -1
}
/**
* Your NumberContainers object will be instantiated and called as such:
* obj := Constructor();
* obj.Change(index,number);
* param_2 := obj.Find(number);
*/
class NumberContainers {
private d = new Map<number, number>();
private g = new Map<number, TreeSet<number>>();
constructor() {}
change(index: number, number: number): void {
if (this.d.has(index)) {
const oldNumber = this.d.get(index)!;
this.g.get(oldNumber)!.delete(index);
if (!this.g.get(oldNumber)!.size()) {
this.g.delete(oldNumber);
}
}
this.d.set(index, number);
if (!this.g.has(number)) {
this.g.set(number, new TreeSet());
}
this.g.get(number)!.add(index);
}
find(number: number): number {
return this.g.has(number) ? this.g.get(number)!.first()! : -1;
}
}
type Compare<T> = (lhs: T, rhs: T) => number;
class RBTreeNode<T = number> {
data: T;
count: number;
left: RBTreeNode<T> | null;
right: RBTreeNode<T> | null;
parent: RBTreeNode<T> | null;
color: number;
constructor(data: T) {
this.data = data;
this.left = this.right = this.parent = null;
this.color = 0;
this.count = 1;
}
sibling(): RBTreeNode<T> | null {
if (!this.parent) return null; // sibling null if no parent
return this.isOnLeft() ? this.parent.right : this.parent.left;
}
isOnLeft(): boolean {
return this === this.parent!.left;
}
hasRedChild(): boolean {
return (
Boolean(this.left && this.left.color === 0) ||
Boolean(this.right && this.right.color === 0)
);
}
}
class RBTree<T> {
root: RBTreeNode<T> | null;
lt: (l: T, r: T) => boolean;
constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
this.root = null;
this.lt = (l: T, r: T) => compare(l, r) < 0;
}
rotateLeft(pt: RBTreeNode<T>): void {
const right = pt.right!;
pt.right = right.left;
if (pt.right) pt.right.parent = pt;
right.parent = pt.parent;
if (!pt.parent) this.root = right;
else if (pt === pt.parent.left) pt.parent.left = right;
else pt.parent.right = right;
right.left = pt;
pt.parent = right;
}
rotateRight(pt: RBTreeNode<T>): void {
const left = pt.left!;
pt.left = left.right;
if (pt.left) pt.left.parent = pt;
left.parent = pt.parent;
if (!pt.parent) this.root = left;
else if (pt === pt.parent.left) pt.parent.left = left;
else pt.parent.right = left;
left.right = pt;
pt.parent = left;
}
swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.color;
p1.color = p2.color;
p2.color = tmp;
}
swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
const tmp = p1.data;
p1.data = p2.data;
p2.data = tmp;
}
fixAfterInsert(pt: RBTreeNode<T>): void {
let parent = null;
let grandParent = null;
while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
parent = pt.parent;
grandParent = pt.parent.parent;
/* Case : A
Parent of pt is left child of Grand-parent of pt */
if (parent === grandParent?.left) {
const uncle = grandParent.right;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle && uncle.color === 0) {
grandParent.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent;
} else {
/* Case : 2
pt is right child of its parent
Left-rotation required */
if (pt === parent.right) {
this.rotateLeft(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is left child of its parent
Right-rotation required */
this.rotateRight(grandParent);
this.swapColor(parent!, grandParent);
pt = parent!;
}
} else {
/* Case : B
Parent of pt is right child of Grand-parent of pt */
const uncle = grandParent!.left;
/* Case : 1
The uncle of pt is also red
Only Recoloring required */
if (uncle != null && uncle.color === 0) {
grandParent!.color = 0;
parent.color = 1;
uncle.color = 1;
pt = grandParent!;
} else {
/* Case : 2
pt is left child of its parent
Right-rotation required */
if (pt === parent.left) {
this.rotateRight(parent);
pt = parent;
parent = pt.parent;
}
/* Case : 3
pt is right child of its parent
Left-rotation required */
this.rotateLeft(grandParent!);
this.swapColor(parent!, grandParent!);
pt = parent!;
}
}
}
this.root!.color = 1;
}
delete(val: T): boolean {
const node = this.find(val);
if (!node) return false;
node.count--;
if (!node.count) this.deleteNode(node);
return true;
}
deleteAll(val: T): boolean {
const node = this.find(val);
if (!node) return false;
this.deleteNode(node);
return true;
}
deleteNode(v: RBTreeNode<T>): void {
const u = BSTreplace(v);
// True when u and v are both black
const uvBlack = (u === null || u.color === 1) && v.color === 1;
const parent = v.parent!;
if (!u) {
// u is null therefore v is leaf
if (v === this.root) this.root = null;
// v is root, making root null
else {
if (uvBlack) {
// u and v both black
// v is leaf, fix double black at v
this.fixDoubleBlack(v);
} else {
// u or v is red
if (v.sibling()) {
// sibling is not null, make it red"
v.sibling()!.color = 0;
}
}
// delete v from the tree
if (v.isOnLeft()) parent.left = null;
else parent.right = null;
}
return;
}
if (!v.left || !v.right) {
// v has 1 child
if (v === this.root) {
// v is root, assign the value of u to v, and delete u
v.data = u.data;
v.left = v.right = null;
} else {
// Detach v from tree and move u up
if (v.isOnLeft()) parent.left = u;
else parent.right = u;
u.parent = parent;
if (uvBlack) this.fixDoubleBlack(u);
// u and v both black, fix double black at u
else u.color = 1; // u or v red, color u black
}
return;
}
// v has 2 children, swap data with successor and recurse
this.swapData(u, v);
this.deleteNode(u);
// find node that replaces a deleted node in BST
function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
// when node have 2 children
if (x.left && x.right) return successor(x.right);
// when leaf
if (!x.left && !x.right) return null;
// when single child
return x.left ?? x.right;
}
// find node that do not have a left child
// in the subtree of the given node
function successor(x: RBTreeNode<T>): RBTreeNode<T> {
let temp = x;
while (temp.left) temp = temp.left;
return temp;
}
}
fixDoubleBlack(x: RBTreeNode<T>): void {
if (x === this.root) return; // Reached root
const sibling = x.sibling();
const parent = x.parent!;
if (!sibling) {
// No sibiling, double black pushed up
this.fixDoubleBlack(parent);
} else {
if (sibling.color === 0) {
// Sibling red
parent.color = 0;
sibling.color = 1;
if (sibling.isOnLeft()) this.rotateRight(parent);
// left case
else this.rotateLeft(parent); // right case
this.fixDoubleBlack(x);
} else {
// Sibling black
if (sibling.hasRedChild()) {
// at least 1 red children
if (sibling.left && sibling.left.color === 0) {
if (sibling.isOnLeft()) {
// left left
sibling.left.color = sibling.color;
sibling.color = parent.color;
this.rotateRight(parent);
} else {
// right left
sibling.left.color = parent.color;
this.rotateRight(sibling);
this.rotateLeft(parent);
}
} else {
if (sibling.isOnLeft()) {
// left right
sibling.right!.color = parent.color;
this.rotateLeft(sibling);
this.rotateRight(parent);
} else {
// right right
sibling.right!.color = sibling.color;
sibling.color = parent.color;
this.rotateLeft(parent);
}
}
parent.color = 1;
} else {
// 2 black children
sibling.color = 0;
if (parent.color === 1) this.fixDoubleBlack(parent);
else parent.color = 1;
}
}
}
}
insert(data: T): boolean {
// search for a position to insert
let parent = this.root;
while (parent) {
if (this.lt(data, parent.data)) {
if (!parent.left) break;
else parent = parent.left;
} else if (this.lt(parent.data, data)) {
if (!parent.right) break;
else parent = parent.right;
} else break;
}
// insert node into parent
const node = new RBTreeNode(data);
if (!parent) this.root = node;
else if (this.lt(node.data, parent.data)) parent.left = node;
else if (this.lt(parent.data, node.data)) parent.right = node;
else {
parent.count++;
return false;
}
node.parent = parent;
this.fixAfterInsert(node);
return true;
}
find(data: T): RBTreeNode<T> | null {
let p = this.root;
while (p) {
if (this.lt(data, p.data)) {
p = p.left;
} else if (this.lt(p.data, data)) {
p = p.right;
} else break;
}
return p ?? null;
}
*inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.inOrder(root.left!)) yield v;
yield root.data;
for (const v of this.inOrder(root.right!)) yield v;
}
*reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
if (!root) return;
for (const v of this.reverseInOrder(root.right!)) yield v;
yield root.data;
for (const v of this.reverseInOrder(root.left!)) yield v;
}
}
class TreeSet<T = number> {
_size: number;
tree: RBTree<T>;
compare: Compare<T>;
constructor(
collection: T[] | Compare<T> = [],
compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
) {
if (typeof collection === 'function') {
compare = collection;
collection = [];
}
this._size = 0;
this.compare = compare;
this.tree = new RBTree(compare);
for (const val of collection) this.add(val);
}
size(): number {
return this._size;
}
has(val: T): boolean {
return !!this.tree.find(val);
}
add(val: T): boolean {
const successful = this.tree.insert(val);
this._size += successful ? 1 : 0;
return successful;
}
delete(val: T): boolean {
const deleted = this.tree.deleteAll(val);
this._size -= deleted ? 1 : 0;
return deleted;
}
ceil(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(p.data, val) >= 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
floor(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(val, p.data) >= 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
higher(val: T): T | undefined {
let p = this.tree.root;
let higher = null;
while (p) {
if (this.compare(val, p.data) < 0) {
higher = p;
p = p.left;
} else {
p = p.right;
}
}
return higher?.data;
}
lower(val: T): T | undefined {
let p = this.tree.root;
let lower = null;
while (p) {
if (this.compare(p.data, val) < 0) {
lower = p;
p = p.right;
} else {
p = p.left;
}
}
return lower?.data;
}
first(): T | undefined {
return this.tree.inOrder().next().value;
}
last(): T | undefined {
return this.tree.reverseInOrder().next().value;
}
shift(): T | undefined {
const first = this.first();
if (first === undefined) return undefined;
this.delete(first);
return first;
}
pop(): T | undefined {
const last = this.last();
if (last === undefined) return undefined;
this.delete(last);
return last;
}
*[Symbol.iterator](): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*keys(): Generator<T, void, void> {
for (const val of this.values()) yield val;
}
*values(): Generator<T, undefined, void> {
for (const val of this.tree.inOrder()) yield val;
return undefined;
}
/**
* Return a generator for reverse order traversing the set
*/
*rvalues(): Generator<T, undefined, void> {
for (const val of this.tree.reverseInOrder()) yield val;
return undefined;
}
}
/**
* Your NumberContainers object will be instantiated and called as such:
* var obj = new NumberContainers()
* obj.change(index,number)
* var param_2 = obj.find(number)
*/