comments | difficulty | edit_url | rating | source | tags | |
---|---|---|---|---|---|---|
true |
Medium |
1515 |
Weekly Contest 362 Q2 |
|
You are given four integers sx
, sy
, fx
, fy
, and a non-negative integer t
.
In an infinite 2D grid, you start at the cell (sx, sy)
. Each second, you must move to any of its adjacent cells.
Return true
if you can reach cell (fx, fy)
after exactly t
seconds, or false
otherwise.
A cell's adjacent cells are the 8 cells around it that share at least one corner with it. You can visit the same cell several times.
Example 1:
Input: sx = 2, sy = 4, fx = 7, fy = 7, t = 6 Output: true Explanation: Starting at cell (2, 4), we can reach cell (7, 7) in exactly 6 seconds by going through the cells depicted in the picture above.
Example 2:
Input: sx = 3, sy = 1, fx = 7, fy = 3, t = 3 Output: false Explanation: Starting at cell (3, 1), it takes at least 4 seconds to reach cell (7, 3) by going through the cells depicted in the picture above. Hence, we cannot reach cell (7, 3) at the third second.
Constraints:
1 <= sx, sy, fx, fy <= 109
0 <= t <= 109
If the starting point and the destination are the same, then we can only reach the destination within the given time if
Otherwise, we can calculate the difference in the x and y coordinates between the starting point and the destination, and then take the maximum value. If the maximum value is less than or equal to the given time, then we can reach the destination within the given time.
The time complexity is
class Solution:
def isReachableAtTime(self, sx: int, sy: int, fx: int, fy: int, t: int) -> bool:
if sx == fx and sy == fy:
return t != 1
dx = abs(sx - fx)
dy = abs(sy - fy)
return max(dx, dy) <= t
class Solution {
public boolean isReachableAtTime(int sx, int sy, int fx, int fy, int t) {
if (sx == fx && sy == fy) {
return t != 1;
}
int dx = Math.abs(sx - fx);
int dy = Math.abs(sy - fy);
return Math.max(dx, dy) <= t;
}
}
class Solution {
public:
bool isReachableAtTime(int sx, int sy, int fx, int fy, int t) {
if (sx == fx && sy == fy) {
return t != 1;
}
int dx = abs(fx - sx), dy = abs(fy - sy);
return max(dx, dy) <= t;
}
};
func isReachableAtTime(sx int, sy int, fx int, fy int, t int) bool {
if sx == fx && sy == fy {
return t != 1
}
dx := abs(sx - fx)
dy := abs(sy - fy)
return max(dx, dy) <= t
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}
function isReachableAtTime(sx: number, sy: number, fx: number, fy: number, t: number): boolean {
if (sx === fx && sy === fy) {
return t !== 1;
}
const dx = Math.abs(sx - fx);
const dy = Math.abs(sy - fy);
return Math.max(dx, dy) <= t;
}
public class Solution {
public bool IsReachableAtTime(int sx, int sy, int fx, int fy, int t) {
if (sx == fx && sy == fy) {
return t != 1;
}
return Math.Max(Math.Abs(sx - fx), Math.Abs(sy - fy)) <= t;
}
}