comments | difficulty | edit_url | rating | source | tags | |||||
---|---|---|---|---|---|---|---|---|---|---|
true |
中等 |
1694 |
第 416 场周赛 Q2 |
|
给你一个整数 mountainHeight
表示山的高度。
同时给你一个整数数组 workerTimes
,表示工人们的工作时间(单位:秒)。
工人们需要 同时 进行工作以 降低 山的高度。对于工人 i
:
- 山的高度降低
x
,需要花费workerTimes[i] + workerTimes[i] * 2 + ... + workerTimes[i] * x
秒。例如:<ul> <li>山的高度降低 1,需要 <code>workerTimes[i]</code> 秒。</li> <li>山的高度降低 2,需要 <code>workerTimes[i] + workerTimes[i] * 2</code> 秒,依此类推。</li> </ul> </li>
返回一个整数,表示工人们使山的高度降低到 0 所需的 最少 秒数。
示例 1:
输入: mountainHeight = 4, workerTimes = [2,1,1]
输出: 3
解释:
将山的高度降低到 0 的一种方式是:
- 工人 0 将高度降低 1,花费
workerTimes[0] = 2
秒。 - 工人 1 将高度降低 2,花费
workerTimes[1] + workerTimes[1] * 2 = 3
秒。 - 工人 2 将高度降低 1,花费
workerTimes[2] = 1
秒。
因为工人同时工作,所需的最少时间为 max(2, 3, 1) = 3
秒。
示例 2:
输入: mountainHeight = 10, workerTimes = [3,2,2,4]
输出: 12
解释:
- 工人 0 将高度降低 2,花费
workerTimes[0] + workerTimes[0] * 2 = 9
秒。 - 工人 1 将高度降低 3,花费
workerTimes[1] + workerTimes[1] * 2 + workerTimes[1] * 3 = 12
秒。 - 工人 2 将高度降低 3,花费
workerTimes[2] + workerTimes[2] * 2 + workerTimes[2] * 3 = 12
秒。 - 工人 3 将高度降低 2,花费
workerTimes[3] + workerTimes[3] * 2 = 12
秒。
所需的最少时间为 max(9, 12, 12, 12) = 12
秒。
示例 3:
输入: mountainHeight = 5, workerTimes = [1]
输出: 15
解释:
这个示例中只有一个工人,所以答案是 workerTimes[0] + workerTimes[0] * 2 + workerTimes[0] * 3 + workerTimes[0] * 4 + workerTimes[0] * 5 = 15
秒。
提示:
1 <= mountainHeight <= 105
1 <= workerTimes.length <= 104
1 <= workerTimes[i] <= 106
我们注意到,如果所有的工人能在
我们定义一个函数
解不等式得到:
我们可以将所有工人的
接下来,我们确定二分查找的左边界
时间复杂度
class Solution:
def minNumberOfSeconds(self, mountainHeight: int, workerTimes: List[int]) -> int:
def check(t: int) -> bool:
h = 0
for wt in workerTimes:
h += int(sqrt(2 * t / wt + 1 / 4) - 1 / 2)
return h >= mountainHeight
return bisect_left(range(10**16), True, key=check)
class Solution {
private int mountainHeight;
private int[] workerTimes;
public long minNumberOfSeconds(int mountainHeight, int[] workerTimes) {
this.mountainHeight = mountainHeight;
this.workerTimes = workerTimes;
long l = 1, r = (long) 1e16;
while (l < r) {
long mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
private boolean check(long t) {
long h = 0;
for (int wt : workerTimes) {
h += (long) (Math.sqrt(t * 2.0 / wt + 0.25) - 0.5);
}
return h >= mountainHeight;
}
}
class Solution {
public:
long long minNumberOfSeconds(int mountainHeight, vector<int>& workerTimes) {
using ll = long long;
ll l = 1, r = 1e16;
auto check = [&](ll t) -> bool {
ll h = 0;
for (int& wt : workerTimes) {
h += (long long) (sqrt(t * 2.0 / wt + 0.25) - 0.5);
}
return h >= mountainHeight;
};
while (l < r) {
ll mid = (l + r) >> 1;
if (check(mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return l;
}
};
func minNumberOfSeconds(mountainHeight int, workerTimes []int) int64 {
return int64(sort.Search(1e16, func(t int) bool {
var h int64
for _, wt := range workerTimes {
h += int64(math.Sqrt(float64(t)*2.0/float64(wt)+0.25) - 0.5)
}
return h >= int64(mountainHeight)
}))
}
function minNumberOfSeconds(mountainHeight: number, workerTimes: number[]): number {
const check = (t: bigint): boolean => {
let h = BigInt(0);
for (const wt of workerTimes) {
h += BigInt(Math.floor(Math.sqrt((Number(t) * 2.0) / wt + 0.25) - 0.5));
}
return h >= BigInt(mountainHeight);
};
let l = BigInt(1);
let r = BigInt(1e16);
while (l < r) {
const mid = (l + r) >> BigInt(1);
if (check(mid)) {
r = mid;
} else {
l = mid + 1n;
}
}
return Number(l);
}