Skip to content

Latest commit

 

History

History
398 lines (317 loc) · 10 KB

File metadata and controls

398 lines (317 loc) · 10 KB
comments difficulty edit_url rating source tags
true
Medium
2186
Biweekly Contest 145 Q3
Graph
Math
Number Theory
Shortest Path
Heap (Priority Queue)

中文文档

Description

You are given two integers n and m that consist of the same number of digits.

You can perform the following operations any number of times:

  • Choose any digit from n that is not 9 and increase it by 1.
  • Choose any digit from n that is not 0 and decrease it by 1.

The integer n must not be a prime number at any point, including its original value and after each operation.

The cost of a transformation is the sum of all values that n takes throughout the operations performed.

Return the minimum cost to transform n into m. If it is impossible, return -1.

 

Example 1:

Input: n = 10, m = 12

Output: 85

Explanation:

We perform the following operations:

  • Increase the first digit, now n = 20.
  • Increase the second digit, now n = 21.
  • Increase the second digit, now n = 22.
  • Decrease the first digit, now n = 12.

Example 2:

Input: n = 4, m = 8

Output: -1

Explanation:

It is impossible to make n equal to m.

Example 3:

Input: n = 6, m = 2

Output: -1

Explanation: 

Since 2 is already a prime, we can't make n equal to m.

 

Constraints:

  • 1 <= n, m < 104
  • n and m consist of the same number of digits.

Solutions

Solution 1

Python3

import heapq

class Solution:
    def __init__(self):
        self.sieve = []

    def run_sieve(self):
        self.sieve = [True] * 100000
        self.sieve[0], self.sieve[1] = False, False
        for i in range(2, 100000):
            if self.sieve[i]:
                for j in range(2 * i, 100000, i):
                    self.sieve[j] = False

    def solve(self, n, m):
        pq = []
        heapq.heappush(pq, (n, n))
        visited = set()

        while pq:
            sum_, cur = heapq.heappop(pq)

            if cur in visited:
                continue
            visited.add(cur)

            if cur == m:
                return sum_

            s = list(str(cur))
            for i in range(len(s)):
                c = s[i]

                if s[i] < '9':
                    s[i] = chr(ord(s[i]) + 1)
                    next_ = int(''.join(s))
                    if not self.sieve[next_] and next_ not in visited:
                        heapq.heappush(pq, (sum_ + next_, next_))
                    s[i] = c

                if s[i] > '0' and not (i == 0 and s[i] == '1'):
                    s[i] = chr(ord(s[i]) - 1)
                    next_ = int(''.join(s))
                    if not self.sieve[next_] and next_ not in visited:
                        heapq.heappush(pq, (sum_ + next_, next_))
                    s[i] = c

        return -1

    def minOperations(self, n, m):
        self.run_sieve()
        if self.sieve[n] or self.sieve[m]:
            return -1
        return self.solve(n, m)

Java

class Solution {
    private boolean[] sieve;

    private void runSieve() {
        sieve = new boolean[100000];
        Arrays.fill(sieve, true);
        sieve[0] = false;
        sieve[1] = false;
        for (int i = 2; i < 100000; i++) {
            if (sieve[i]) {
                for (int j = 2 * i; j < 100000; j += i) {
                    sieve[j] = false;
                }
            }
        }
    }

    private int solve(int n, int m) {
        PriorityQueue<int[]> pq = new PriorityQueue<>(Comparator.comparingInt(a -> a[0]));
        pq.add(new int[] {n, n});
        Set<Integer> visited = new HashSet<>();

        while (!pq.isEmpty()) {
            int[] top = pq.poll();
            int sum = top[0], cur = top[1];

            if (visited.contains(cur)) {
                continue;
            }
            visited.add(cur);

            if (cur == m) {
                return sum;
            }

            char[] s = String.valueOf(cur).toCharArray();
            for (int i = 0; i < s.length; i++) {
                char c = s[i];

                if (s[i] < '9') {
                    s[i] = (char) (s[i] + 1);
                    int next = Integer.parseInt(new String(s));
                    if (!sieve[next] && !visited.contains(next)) {
                        pq.add(new int[] {sum + next, next});
                    }
                    s[i] = c;
                }

                if (s[i] > '0' && !(i == 0 && s[i] == '1')) {
                    s[i] = (char) (s[i] - 1);
                    int next = Integer.parseInt(new String(s));
                    if (!sieve[next] && !visited.contains(next)) {
                        pq.add(new int[] {sum + next, next});
                    }
                    s[i] = c;
                }
            }
        }

        return -1;
    }

    public int minOperations(int n, int m) {
        runSieve();
        if (sieve[n] || sieve[m]) {
            return -1;
        }
        return solve(n, m);
    }
}

C++

class Solution {
private:
    vector<bool> sieve;
    void runSieve() {
        sieve.resize(100000, true);
        sieve[0] = false, sieve[1] = false;
        for (int i = 2; i < 1e5; ++i) {
            if (sieve[i]) {
                for (int j = 2 * i; j < 1e5; j += i) {
                    sieve[j] = false;
                }
            }
        }
    }
    int solve(int n, int m) {
        priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq;
        unordered_set<int> vis;
        pq.push({n, n});
        while (!pq.empty()) {
            int sum = pq.top().first, cur = pq.top().second;
            pq.pop();
            if (vis.find(cur) != vis.end()) continue;
            vis.insert(cur);
            if (cur == m) return sum;
            string s = to_string(cur);
            for (int i = 0; i < s.size(); ++i) {
                char c = s[i];
                if (s[i] < '9') {
                    s[i]++;
                    int next = stoi(s);
                    if (!sieve[next] && vis.find(next) == vis.end()) {
                        pq.push({sum + next, next});
                    }
                    s[i] = c;
                }
                if (s[i] > '0' && !(i == 0 && s[i] == '1')) {
                    s[i]--;
                    int next = stoi(s);
                    if (!sieve[next] && vis.find(next) == vis.end()) {
                        pq.push({sum + next, next});
                    }
                    s[i] = c;
                }
            }
        }
        return -1;
    }

public:
    int minOperations(int n, int m) {
        runSieve();
        if (sieve[n] || sieve[m]) return -1;
        return solve(n, m);
    }
};

Go

package main

import (
	"container/heap"
	"strconv"
)

type MinHeap [][]int

func (h MinHeap) Len() int            { return len(h) }
func (h MinHeap) Less(i, j int) bool { return h[i][0] < h[j][0] }
func (h MinHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }
func (h *MinHeap) Push(x interface{}) {
	*h = append(*h, x.([]int))
}
func (h *MinHeap) Pop() interface{} {
	old := *h
	n := len(old)
	x := old[n-1]
	*h = old[0 : n-1]
	return x
}

var sieve []bool

func runSieve() {
	sieve = make([]bool, 100000)
	for i := range sieve {
		sieve[i] = true
	}
	sieve[0], sieve[1] = false, false
	for i := 2; i < 100000; i++ {
		if sieve[i] {
			for j := 2 * i; j < 100000; j += i {
				sieve[j] = false
			}
		}
	}
}

func solve(n int, m int) int {
	pq := &MinHeap{}
	heap.Init(pq)
	heap.Push(pq, []int{n, n})
	visited := make(map[int]bool)

	for pq.Len() > 0 {
		top := heap.Pop(pq).([]int)
		sum, cur := top[0], top[1]

		if visited[cur] {
			continue
		}
		visited[cur] = true

		if cur == m {
			return sum
		}

		s := []rune(strconv.Itoa(cur))
		for i := 0; i < len(s); i++ {
			c := s[i]

			if s[i] < '9' {
				s[i]++
				next, _ := strconv.Atoi(string(s))
				if !sieve[next] && !visited[next] {
					heap.Push(pq, []int{sum + next, next})
				}
				s[i] = c
			}

			if s[i] > '0' && !(i == 0 && s[i] == '1') {
				s[i]--
				next, _ := strconv.Atoi(string(s))
				if !sieve[next] && !visited[next] {
					heap.Push(pq, []int{sum + next, next})
				}
				s[i] = c
			}
		}
	}

	return -1
}

func minOperations(n int, m int) int {
	runSieve()
	if sieve[n] || sieve[m] {
		return -1
	}
	return solve(n, m)
}