forked from Alkoos/projet_robvis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtemplate_match.py
221 lines (173 loc) · 6.57 KB
/
template_match.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import cv2
import numpy as np
import os
# chargement d'une image
path_blanc = 'template_blanc/'
path_rose = 'template_rose/'
def parcours_dossier(path,image):
copy_image = image.copy()
copy_image = image[250:370,250:440]
copy_image2 = image.copy()
seuil = 0.8
l = []
for file in os.listdir(path):
if file.endswith('png'):
image_path = os.path.join(path,file)
temp = cv2.imread(image_path,0)
w1,h1 = temp.shape[::-1]
r = cv2.matchTemplate(img_gray,temp,cv2.TM_CCOEFF_NORMED)
loc = np.where(r>=seuil)
if len(loc[0])>0:
l.append([image_path,len(loc[0])])
p = []
for j in range(len(l)):
p.append(l[j][1])
best = max(p)
best_im = ""
angle_rot = 0
for x in l:
if x[1]==best:
best_im=x[0]
num_image = (best_im[23:25])
if num_image[1]=='.':
num_image = num_image[0]
num_image = int(num_image)
sens = 0
if path==path_blanc:
if num_image in [i for i in range(1,10)] : # si le nombre est entre
sens = 0
else:
sens = 1
templ = cv2.imread(best_im,0)
im_gray = cv2.cvtColor(copy_image,cv2.COLOR_BGR2GRAY)
res = cv2.matchTemplate(im_gray,templ,cv2.TM_CCOEFF_NORMED)
locate = np.where(res >= seuil)
#locate2 = np.where(res>=seuil)
w2,h2 = templ.shape[::-1]
for pt in zip(*locate[::-1]):
cv2.rectangle(copy_image2, (pt[0]+250,pt[1]+250), (pt[0]+250 + w2, pt[1]+250 + h2), (0,255,255), 2)
x1 = list(zip(*locate[::-1]))[0][0]+125
y1 = list(zip(*locate[::-1]))[0][1]+125
x2 = x1+ w2+250
y2 = y1 + h2+250
x = int((x1+x2)/2)
y = int((y1+y2)/2)
x1_c = list(zip(*locate[::-1]))[0][0]
y1_c = list(zip(*locate[::-1]))[0][1]
x2_c = x1_c+ w2
y2_c = y1_c + h2
x_c = int((x1_c+x2_c)/2)
y_c = int((y1_c+y2_c)/2)
cv2.circle(copy_image2,(x,y),5,[0,0,255],-1)
#cv2.imshow("Result", copy_image)
#cv2.imshow('2', copy_image2)
#cv2.waitKey(0)
return ([x_c,y_c],sens)
def difference(background,image):
sens = parcours_dossier(path_blanc,image)
img_back = cv2.imread(background)
copy = image.copy()
back_copy =img_back.copy()
kernel = np.ones((7,7),np.uint8)
#img = cv2.imread(copy)
crop_back = back_copy[250:370-5,250:440-5]
crop_img = copy[250:370-5,250:440-5]
diff = cv2.absdiff(crop_back,crop_img)
_,bin = cv2.threshold(diff,80,255,cv2.THRESH_BINARY)
bin_closed = cv2.morphologyEx(bin,cv2.MORPH_CLOSE,kernel)
dim = bin_closed.shape
couleurs = []
xlist = []
ylist = []
for i in range((dim[0])):
for j in range((dim[1])):
couleurs.append(bin_closed[i][j])
if (couleurs[-1][0]==255 and couleurs[-1][1]==255 and couleurs[-1][2]==255):
xlist.append(i)
ylist.append(j)
cv2.circle(bin_closed,(i,j),1,[0,0,255],-1)
x = int(sum(xlist)/len(xlist))
y = int(sum(ylist)/len(ylist))
centre_g = (y,x)
cv2.circle(bin_closed,(y,x),5,[0,0,255],-1)
cv2.imshow('diff',diff)
cv2.imshow('bin',bin_closed[0:120-5,0:190-5])
cv2.waitKey(0)
return(centre_g,xlist,ylist,dim)
def transposer_matrice(matrice):
return list(zip(*matrice))
def matrice_C(centre, coordx, coordy):
M= []
for i in range(len(coordx)):
x_tilde = centre[0]-coordx[i]
y_tilde = centre[0]-coordy[i]
M.append([x_tilde, y_tilde])
Mt = transposer_matrice(M)
C = np.dot(Mt, M)
return C
def orientation(C):
valeurs_propres, vecteurs_propres = np.linalg.eig(C)
indice_max_valeur_propre = np.argmax(valeurs_propres)
vecteur_propre_max = vecteurs_propres[:, indice_max_valeur_propre]
#print(vecteur_propre_max)
vecteur_propre_max_transforme = np.array([vecteur_propre_max[0], vecteur_propre_max[1], 0])
return vecteur_propre_max_transforme
# Exemple d'utilisation
video = cv2.VideoCapture(2)
ret,frame = video.read()
p = frame[220:400,200:500]
cv2.imshow("Vidéo", frame)
# conversio en niveau de gris (un seul canal)
img_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#print(parcours_dossier(path_blanc,frame))
centre,xlist,ylist,referentiel = difference('image_cam.jpg',frame)
print(referentiel)
centre_mm = [centre[0]*350/referentiel[1]+20,centre[1]*250/referentiel[0]+25]
print(centre_mm,'mm')
C = matrice_C(centre,xlist,ylist)
vecteur_centre = np.array([centre[0], centre[1],0, 1])
longueur_x = 350
largeur_y = 250
vecteur_propre_max = orientation(C)
#depart-repere de la camera
x1, y1, z1 = 0,0,0
x2, y2, z2 = 0,350,0
x3, y3, z3 = 250,0,0
x4, y4, z4 = 250,350,0
#destination-repere du robot
x1_prime, y1_prime, z1_prime = -46.46,236.83,0
x2_prime, y2_prime, z2_prime = 286.38,236.55,0
x3_prime, y3_prime, z3_prime = -44,3,0
x4_prime, y4_prime, z4_prime = 286.98,3,0
points_src = np.array([[x1, y1, z1, 1],
[x2, y2, z2, 1],
[x3, y3, z3, 1],
[x4, y4, z4, 1]])
points_dst = np.array([[x1_prime, y1_prime, z1_prime,1],
[x2_prime, y2_prime, z2_prime,1],
[x3_prime, y3_prime, z3_prime,1],
[x4_prime, y4_prime, z4_prime,1]])
affine_transformation = np.transpose(np.linalg.lstsq(points_src, points_dst, rcond=None)[0])
print(affine_transformation)
coord_a_atteindre = np.dot(affine_transformation, np.transpose(vecteur_centre))
print('coordonnes',coord_a_atteindre)
print("Matrice de transformation affine :\n", affine_transformation)
print("C:")
print(C)
print("--------------------")
print("Vecteur propre associé à la plus grande valeur propre:")
print(vecteur_propre_max)
#qt = q.quaternion(0, vecteur_propre_max[0], vecteur_propre_max[1], vecteur_propre_max[2])
#qt = q.as_quat_array(vecteur_propre_max)
#qt = q.as_rotation_vector(vecteur_propre_max)
rotation_vector = vecteur_propre_max
angle = np.arctan2(vecteur_propre_max[1],vecteur_propre_max[0])
axis = rotation_vector / angle if angle != 0 else np.zeros(3)
s = np.sin(angle / 2)
pose_objet = np.array([np.cos(angle / 2), axis[0] * s, axis[1] * s, axis[2] * s])
print(pose_objet)
#print("Le quaternion correspondant au vecteur u dans le plan xy est :", qt)
#print(parcours_dossier(path_blanc,frame))
#ima = cv2.imread(parcours_dossier(path_blanc))
# chargement de l'image template à rechercher
# seuil de décision qui valide ou non le matching