-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
664 lines (585 loc) · 23.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import os
import argparse
import random
import time
from tqdm import tqdm
import yaml
import shutil
from psutil import virtual_memory
import multiprocessing
import numpy as np
import torch
from torch import nn, optim
from torchvision import transforms
from torch.cuda.amp import autocast, GradScaler
import albumentations as A
from albumentations.pytorch import ToTensorV2
import wandb
from checkpoint import (
default_checkpoint,
load_checkpoint,
save_checkpoint,
# init_tensorboard,
# write_tensorboard,
write_wandb
)
from flags import Flags
from utils import set_seed, print_system_envs, get_optimizer, get_network, id_to_string
from utils import get_timestamp
from dataset import dataset_loader, START, PAD, load_vocab
from scheduler_ import CircularLRBeta, CustomCosineAnnealingWarmUpRestarts, TeacherForcingScheduler
from metrics_ import word_error_rate, sentence_acc, final_metric
os.environ["WANDB_LOG_MODEL"] = "true"
os.environ["WANDB_WATCH"] = "all"
def log(number):
# log에 0이 들어가는 것을 막기 위해 아주 작은 수를 더해줌.
return np.log(number + 1e-10)
def naive_beam_search_decoder(predictions, k):
# prediction = (seq_len , V)
sequences = [[torch.tensor(), 1.0]]
for row in predictions:
all_candidates = torch.tensor()
# 1. 각각의 timestep에서 가능한 후보군으로 확장
for i in range(sequences.size()):
seq, score = sequences[i]
# 2. 확장된 후보 스텝에 대해 점수 계산
for j in range(row.size()):
new_seq = seq + [j]
new_score = score * -log(row[j])
candidate = [new_seq, new_score]
all_candidates = torch.cat([all_candidates, candidate], dim=1)
# 3. 가능도가 높은 k개의 시퀀스만 남김
# ordered = sorted(all_candidates, key=lambda tup:tup[1]) #점수 기준 정렬
ordered = torch.sort(all_candidates)
sequences = ordered[:k]
return sequences
def train_one_epoch(
data_loader,
model,
epoch_text,
criterion,
optimizer,
lr_scheduler,
teacher_forcing_ratio,
max_grad_norm,
device,
scaler,
tf_scheduler # NOTE. Teacher Forcing Scheduler
):
torch.set_grad_enabled(True)
model.train()
losses = []
grad_norms = []
correct_symbols = 0
total_symbols = 0
wer = 0
num_wer = 0
sent_acc = 0
num_sent_acc = 0
with tqdm(
desc=f"{epoch_text} Train",
total=len(data_loader.dataset),
dynamic_ncols=True,
leave=False,
) as pbar:
for d in data_loader:
input = d["image"].to(device).float()
tf_ratio = tf_scheduler.step() # NOTE. Teacher Forcing Scheduler
curr_batch_size = len(input)
expected = d["truth"]["encoded"].to(device)
expected[expected == -1] = data_loader.dataset.token_to_id[PAD]
# with autocast():
output = model(input, expected, True, tf_ratio) # NOTE. Teacher Forcing Scheduler
# output = model(input, expected, True, teacher_forcing_ratio) # [B, MAX_LEN, VOCAB_SIZE]
decoded_values = output.transpose(1, 2) # [B, VOCAB_SIZE, MAX_LEN]
_, sequence = torch.topk(decoded_values, k=1, dim=1) # [B, 1, MAX_LEN]
sequence = sequence.squeeze(1) # [B, MAX_LEN], Metric 측정을 위해
loss = criterion(decoded_values, expected[:, 1:]) # [SOS] 이후부터
optim_params = [
p
for param_group in optimizer.param_groups
for p in param_group["params"]
]
optimizer.zero_grad()
loss.backward()
# scaler.scale(loss).backward()
# scaler.unscale_(optimizer)
grad_norm = nn.utils.clip_grad_norm_(optim_params, max_norm=max_grad_norm)
grad_norms.append(grad_norm)
# cycle
# scaler.step(optimizer)
# scaler.update()
optimizer.step()
losses.append(loss.item())
expected[expected == data_loader.dataset.token_to_id[PAD]] = -1
expected_str = id_to_string(expected, data_loader, do_eval=1)
sequence_str = id_to_string(sequence, data_loader, do_eval=1)
wer += word_error_rate(sequence_str, expected_str)
num_wer += 1
sent_acc += sentence_acc(sequence_str, expected_str)
num_sent_acc += 1
correct_symbols += torch.sum(sequence == expected[:, 1:], dim=(0, 1)).item()
total_symbols += torch.sum(expected[:, 1:] != -1, dim=(0, 1)).item()
pbar.update(curr_batch_size)
lr_scheduler.step()
# lr logging
if isinstance(lr_scheduler.get_lr(), float) or isinstance(lr_scheduler.get_lr(), int):
wandb.log({
"learning_rate": lr_scheduler.get_lr(),
'tf_ratio': tf_ratio # NOTE. Teacher Forcing Scheduler
})
else:
for lr_ in lr_scheduler.get_lr():
wandb.log({
"learning_rate": lr_,
'tf_ratio': tf_ratio # NOTE. Teacher Forcing Scheduler
})
expected = id_to_string(expected, data_loader)
sequence = id_to_string(sequence, data_loader)
result = {
"loss": np.mean(losses),
"correct_symbols": correct_symbols,
"total_symbols": total_symbols,
"wer": wer,
"num_wer": num_wer,
"sent_acc": sent_acc,
"num_sent_acc": num_sent_acc,
}
try:
result["grad_norm"] = np.mean([tensor.cpu() for tensor in grad_norms])
except:
result["grad_norm"] = np.mean(grad_norms)
return result
def valid_one_epoch(
data_loader, model, epoch_text, criterion, device, teacher_forcing_ratio
):
model.eval()
losses = []
correct_symbols = 0
total_symbols = 0
wer = 0
num_wer = 0
sent_acc = 0
num_sent_acc = 0
with torch.no_grad():
with tqdm(
desc=f"{epoch_text} Validation",
total=len(data_loader.dataset),
dynamic_ncols=True,
leave=False,
) as pbar:
for d in data_loader:
input = d["image"].to(device).float()
curr_batch_size = len(input)
expected = d["truth"]["encoded"].to(device)
expected[expected == -1] = data_loader.dataset.token_to_id[PAD]
# with autocast():
output = model(input, expected, False, teacher_forcing_ratio)
decoded_values = output.transpose(1, 2) # [B, VOCAB_SIZE, MAX_LEN]
_, sequence = torch.topk(decoded_values, 1, dim=1) # sequence: [B, 1, MAX_LEN]
sequence = sequence.squeeze(1) # [B, MAX_LEN], 각 샘플에 대해 시퀀스가 생성 상태
loss = criterion(decoded_values, expected[:, 1:])
losses.append(loss.item())
expected[expected == data_loader.dataset.token_to_id[PAD]] = -1
expected_str = id_to_string(expected, data_loader, do_eval=1)
sequence_str = id_to_string(sequence, data_loader, do_eval=1)
wer += word_error_rate(sequence_str, expected_str)
num_wer += 1
sent_acc += sentence_acc(sequence_str, expected_str)
num_sent_acc += 1
correct_symbols += torch.sum(sequence == expected[:, 1:], dim=(0, 1)).item()
total_symbols += torch.sum(expected[:, 1:] != -1, dim=(0, 1)).item()
pbar.update(curr_batch_size)
expected = id_to_string(expected, data_loader)
sequence = id_to_string(sequence, data_loader)
result = {
"loss": np.mean(losses),
"correct_symbols": correct_symbols,
"total_symbols": total_symbols,
"wer": wer,
"num_wer": num_wer,
"sent_acc": sent_acc,
"num_sent_acc": num_sent_acc,
}
return result
def get_train_transforms(height, width):
return A.Compose(
[
A.Resize(height, width),
A.ShiftScaleRotate(shift_limit=0.0, scale_limit=0.1, rotate_limit=0, p=0.5),
A.GridDistortion(p=0.5, num_steps=8, distort_limit=(-0.5, 0.5), interpolation=0, border_mode=0),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2(p=1.0),
],
p=1.0,
)
def get_valid_transforms(height, width):
return A.Compose(
[
A.Resize(height, width),
A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
ToTensorV2(p=1.0)
],
p=1.0,
)
def main(config_file):
"""
Train math formula recognition model
"""
options = Flags(config_file).get()
timestamp = get_timestamp()
# set random seed
set_seed(seed=options.seed)
is_cuda = torch.cuda.is_available()
hardware = "cuda" if is_cuda else "cpu"
device = torch.device(hardware)
print("--------------------------------")
print("Running {} on device {}\n".format(options.network, device))
# Print system environments
print_system_envs()
# Load checkpoint and print result
checkpoint = (
load_checkpoint(options.checkpoint, cuda=is_cuda)
if options.checkpoint != ""
else default_checkpoint
)
model_checkpoint = checkpoint["model"]
if model_checkpoint:
print(
"[+] Checkpoint\n",
"Resuming from epoch : {}\n".format(checkpoint["epoch"]),
"Train Symbol Accuracy : {:.5f}\n".format(
checkpoint["train_symbol_accuracy"][-1]
),
"Train Sentence Accuracy : {:.5f}\n".format(
checkpoint["train_sentence_accuracy"][-1]
),
"Train WER : {:.5f}\n".format(checkpoint["train_wer"][-1]),
"Train Loss : {:.5f}\n".format(checkpoint["train_losses"][-1]),
"Validation Symbol Accuracy : {:.5f}\n".format(
checkpoint["validation_symbol_accuracy"][-1]
),
"Validation Sentence Accuracy : {:.5f}\n".format(
checkpoint["validation_sentence_accuracy"][-1]
),
"Validation WER : {:.5f}\n".format(checkpoint["validation_wer"][-1]),
"Validation Loss : {:.5f}\n".format(checkpoint["validation_losses"][-1]),
)
(
train_data_loader,
validation_data_loader,
train_dataset,
valid_dataset,
) = dataset_loader(
options,
train_transform=get_train_transforms(
options.input_size.height, options.input_size.width
),
valid_transform=get_valid_transforms(
options.input_size.height, options.input_size.width
),
)
# train_data_loader, validation_data_loader, train_dataset, valid_dataset = dataset_loader(options, transformed, transformed)
print(
"[+] Data\n",
"The number of train samples : {}\n".format(len(train_dataset)),
"The number of validation samples : {}\n".format(len(valid_dataset)),
"The number of classes : {}\n".format(len(train_dataset.token_to_id)),
)
# define model
model = get_network(
options.network,
options,
model_checkpoint,
device,
train_dataset,
)
model.train()
# define loss
criterion = model.criterion.to(device)
# define optimizer
enc_params_to_optimise = [
param for param in model.encoder.parameters() if param.requires_grad
]
dec_params_to_optimise = [
param for param in model.decoder.parameters() if param.requires_grad
]
params_to_optimise = [*enc_params_to_optimise, *dec_params_to_optimise]
print(
"[+] Network\n",
"Type: {}\n".format(options.network),
"Encoder parameters: {}\n".format(
sum(p.numel() for p in enc_params_to_optimise),
),
"Decoder parameters: {} \n".format(
sum(p.numel() for p in dec_params_to_optimise),
),
)
# Get optimizer and optimizer
if options.scheduler.scheduler == "CustomCosine":
optimizer = get_optimizer(
options.optimizer.optimizer,
params_to_optimise,
lr=0,
weight_decay=options.optimizer.weight_decay,
)
optimizer_state = checkpoint.get("optimizer")
if optimizer_state:
optimizer.load_state_dict(optimizer_state)
# Custom Cosine Annealing 파라미터 명세 볼 만한 곳: https://bit.ly/2SGDhxO
# T_0: 한 주기에 대한 스텝 수
# T_mult: 주기 반복마다 주기 길이를 T_mult배로 바꿈
# eta_max: warm-up을 통해 도달할 최대 LR
# T_up: 한 주기 내에서 warm-up을 할 스텝 수
# gamma: 주기 반복마다 주기 진폭을 gamma배로 바꿈
total_steps = len(train_data_loader)*options.num_epochs # 전체 스텝 수
t_0 = total_steps // 1 # 주기를 3으로 설정
t_up = int(t_0*0.1) # 한 주기에서 10%의 스텝을 warm-up으로 사용
lr_scheduler = CustomCosineAnnealingWarmUpRestarts(
optimizer,
T_0=t_0,
T_mult=1,
eta_max=options.optimizer.lr,
T_up=t_up,
gamma=0.8,
)
# NOTE. Teacher Forcing Scheduler
tf_scheduler = TeacherForcingScheduler(
num_steps=total_steps,
tf_max=options.teacher_forcing_ratio, # NOTE. yaml 파일의 tf-ratio 1.0으로 수정할 것!
tf_min=0.3
)
else:
optimizer = get_optimizer(
options.optimizer.optimizer,
params_to_optimise,
lr=options.optimizer.lr,
weight_decay=options.optimizer.weight_decay,
)
optimizer_state = checkpoint.get("optimizer")
if optimizer_state:
optimizer.load_state_dict(optimizer_state)
if options.scheduler.scheduler == "ReduceLROnPlateau":
lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, patience=options.schduler.patience
)
elif options.scheduler.scheduler == "StepLR":
lr_scheduler = optim.lr_scheduler.StepLR(
optimizer,
step_size=options.optimizer.lr_epochs,
gamma=options.optimizer.lr_factor,
)
elif options.scheduler.scheduler == "Cycle":
for param_group in optimizer.param_groups:
param_group["initial_lr"] = options.optimizer.lr
cycle = len(train_data_loader) * options.num_epochs
lr_scheduler = CircularLRBeta(
optimizer, options.optimizer.lr, 10, 10, cycle, [0.95, 0.85]
)
if checkpoint['scheduler']:
lr_scheduler.load_state_dict(checkpoint['scheduler'])
# Log for W&B
wandb.config.update(dict(options._asdict())) # logging to W&B
# Log for tensorboard
if not os.path.exists(options.prefix):
os.makedirs(options.prefix)
log_file = open(os.path.join(options.prefix, "log.txt"), "w")
shutil.copy(config_file, os.path.join(options.prefix, "train_config.yaml"))
if options.print_epochs is None:
options.print_epochs = options.num_epochs
# writer = init_tensorboard(name=options.prefix.strip("-"))
start_epoch = checkpoint["epoch"]
train_symbol_accuracy = checkpoint["train_symbol_accuracy"]
train_sentence_accuracy = checkpoint["train_sentence_accuracy"]
train_wer = checkpoint["train_wer"]
train_losses = checkpoint["train_losses"]
validation_symbol_accuracy = checkpoint["validation_symbol_accuracy"]
validation_sentence_accuracy = checkpoint["validation_sentence_accuracy"]
validation_wer = checkpoint["validation_wer"]
validation_losses = checkpoint["validation_losses"]
learning_rates = checkpoint["lr"]
grad_norms = checkpoint["grad_norm"]
scaler = GradScaler()
best_score = 0.0
# Train
for epoch in range(options.num_epochs):
start_time = time.time()
epoch_text = "[{current:>{pad}}/{end}] Epoch {epoch}".format(
current=epoch + 1,
end=options.num_epochs,
epoch=start_epoch + epoch + 1,
pad=len(str(options.num_epochs)),
)
train_result = train_one_epoch(
train_data_loader,
model,
epoch_text,
criterion,
optimizer,
lr_scheduler,
options.teacher_forcing_ratio,
options.max_grad_norm,
device,
scaler,
tf_scheduler # NOTE. Teacher Forcing Scheduler
)
train_losses.append(train_result["loss"])
grad_norms.append(train_result["grad_norm"])
train_epoch_symbol_accuracy = (
train_result["correct_symbols"] / train_result["total_symbols"]
)
train_symbol_accuracy.append(train_epoch_symbol_accuracy)
train_epoch_sentence_accuracy = (
train_result["sent_acc"] / train_result["num_sent_acc"]
)
train_sentence_accuracy.append(train_epoch_sentence_accuracy)
train_epoch_wer = train_result["wer"] / train_result["num_wer"]
train_wer.append(train_epoch_wer)
train_epoch_score = final_metric(
sentence_acc=train_epoch_sentence_accuracy, word_error_rate=train_epoch_wer
)
epoch_lr = lr_scheduler.get_lr() # cycle
validation_result = valid_one_epoch(
validation_data_loader,
model,
epoch_text,
criterion,
device,
teacher_forcing_ratio=options.teacher_forcing_ratio,
)
validation_losses.append(validation_result["loss"])
validation_epoch_symbol_accuracy = (
validation_result["correct_symbols"] / validation_result["total_symbols"]
)
validation_symbol_accuracy.append(validation_epoch_symbol_accuracy)
validation_epoch_sentence_accuracy = (
validation_result["sent_acc"] / validation_result["num_sent_acc"]
)
validation_sentence_accuracy.append(validation_epoch_sentence_accuracy)
validation_epoch_wer = validation_result["wer"] / validation_result["num_wer"]
validation_wer.append(validation_epoch_wer)
validation_epoch_score = final_metric(
sentence_acc=validation_epoch_sentence_accuracy,
word_error_rate=validation_epoch_wer,
)
# Save checkpoint
# make config
with open(config_file, "r") as f:
option_dict = yaml.safe_load(f)
if best_score < 0.9 * validation_epoch_sentence_accuracy + 0.1 * (
1 - validation_epoch_wer
):
# prefix = f"{parser.project_name}-{parser.exp_name}-{timestamp}"
save_checkpoint(
{
"epoch": start_epoch + epoch + 1,
"train_losses": train_losses,
"train_symbol_accuracy": train_symbol_accuracy,
"train_sentence_accuracy": train_sentence_accuracy,
"train_wer": train_wer,
"validation_losses": validation_losses,
"validation_symbol_accuracy": validation_symbol_accuracy,
"validation_sentence_accuracy": validation_sentence_accuracy,
"validation_wer": validation_wer,
"lr": epoch_lr,
"grad_norm": grad_norms,
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"configs": option_dict,
"token_to_id": train_data_loader.dataset.token_to_id,
"id_to_token": train_data_loader.dataset.id_to_token,
"network": options.network,
"scheduler": lr_scheduler.state_dict(),
},
prefix=options.prefix,
# prefix=prefix,
)
best_score = 0.9 * validation_epoch_sentence_accuracy + 0.1 * (
1 - validation_epoch_wer
)
print(f"best score: {best_score}")
print("model is saved")
# Summary
elapsed_time = time.time() - start_time
elapsed_time = time.strftime("%H:%M:%S", time.gmtime(elapsed_time))
if epoch % options.print_epochs == 0 or epoch == options.num_epochs - 1:
output_string = (
"{epoch_text}: "
"Train Symbol Accuracy = {train_symbol_accuracy:.5f}, "
"Train Sentence Accuracy = {train_sentence_accuracy:.5f}, "
"Train WER = {train_wer:.5f}, "
"Train Loss = {train_loss:.5f}, "
"Validation Symbol Accuracy = {validation_symbol_accuracy:.5f}, "
"Validation Sentence Accuracy = {validation_sentence_accuracy:.5f}, "
"Validation WER = {validation_wer:.5f}, "
"Validation Loss = {validation_loss:.5f}, "
"lr = {lr} "
"(time elapsed {time})"
).format(
epoch_text=epoch_text,
train_symbol_accuracy=train_epoch_symbol_accuracy,
train_sentence_accuracy=train_epoch_sentence_accuracy,
train_wer=train_epoch_wer,
train_loss=train_result["loss"],
validation_symbol_accuracy=validation_epoch_symbol_accuracy,
validation_sentence_accuracy=validation_epoch_sentence_accuracy,
validation_wer=validation_epoch_wer,
validation_loss=validation_result["loss"],
lr=epoch_lr,
time=elapsed_time,
)
print(output_string)
log_file.write(output_string + "\n")
# write_tensorboard(
# writer=writer,
# epoch=start_epoch + epoch + 1,
# grad_norm=train_result["grad_norm"],
# train_loss=train_result["loss"],
# train_symbol_accuracy=train_epoch_symbol_accuracy,
# train_sentence_accuracy=train_epoch_sentence_accuracy,
# train_wer=train_epoch_wer,
# validation_loss=validation_result["loss"],
# validation_symbol_accuracy=validation_epoch_symbol_accuracy,
# validation_sentence_accuracy=validation_epoch_sentence_accuracy,
# validation_wer=validation_epoch_wer,
# model=model,
# )
write_wandb(
epoch=start_epoch + epoch + 1,
grad_norm=train_result["grad_norm"],
train_loss=train_result["loss"],
train_symbol_accuracy=train_epoch_symbol_accuracy,
train_sentence_accuracy=train_epoch_sentence_accuracy,
train_wer=train_epoch_wer,
train_score=train_epoch_score,
validation_loss=validation_result["loss"],
validation_symbol_accuracy=validation_epoch_symbol_accuracy,
validation_sentence_accuracy=validation_epoch_sentence_accuracy,
validation_wer=validation_epoch_wer,
validation_score=validation_epoch_score
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--project_name", default="SATRN", help="W&B에 표시될 프로젝트명. 모델명으로 통일!"
)
parser.add_argument(
"--exp_name",
default="SATRN_HM_implement_effnetv2S_fold3_aug-70epoch",
help="실험명(SATRN-베이스라인, SARTN-Loss변경 등)",
)
parser.add_argument(
"-c",
"--config_file",
dest="config_file",
default="./configs/My_SATRN.yaml",
type=str,
help="Path of configuration file",
)
parser = parser.parse_args()
# initilaize W&B
run = wandb.init(project=parser.project_name, name=parser.exp_name)
# train
main(parser.config_file)
# fishe W&B
run.finish()