-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiple_inference.py
256 lines (191 loc) · 10.1 KB
/
multiple_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
########################################################################################
# Originally adapted from the example inference notebook at
# https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb
# This is a slightly optimised version of inference.py, used for calculating inference speeds
# This version avoids re-loading the tf graph for every image
########################################################################################
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from PIL import Image
sys.path.append("..")
from object_detection.utils import ops as utils_ops
if tf.__version__ < '1.4.0':
raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')
from copy import copy
import cv2
from skimage.morphology import skeletonize
import time
import datetime
import pickle
# This is needed to display the images.
#%matplotlib inline
from tensorflow.models.research.object_detection.utils import label_map_util
from tensorflow.models.research.object_detection.utils import visualization_utils as vis_util
from utility_functions import load_image_into_numpy_array
#from utility_functions import run_inference_for_single_image
# Load inference graph from checkpoint
MODEL_NAME = 'inception_resnet/fine_tuned_model_100k_final_sets'
PATH_TO_CKPT = os.path.join('./downloaded_models', MODEL_NAME, 'frozen_inference_graph.pb')
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Load label map from file
PATH_TO_LABELS = './data/worm_label_map.pbtxt'
NUM_CLASSES = 1
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
##############################################################################################################
# Load the dataset for inference
NUM_IMAGES = 20
DATASET_DIR = './data/fullsize_images/'
datasets = [f for f in os.listdir(DATASET_DIR) if not f.startswith('.')]
print(datasets)
dataset = datasets[2]
print()
print("########################################################################################################################")
print("Using model: {}".format(MODEL_NAME))
print()
print("Running inference on dataset {}".format(dataset))
print()
PATH_TO_TEST_IMAGES_DIR = os.path.join(DATASET_DIR, dataset)
FNAMES = [f for f in os.listdir(PATH_TO_TEST_IMAGES_DIR) if not f.startswith('.')]
FNAMES = sorted(FNAMES, key=int)[:NUM_IMAGES]
# Size of output images.
IMAGE_SIZE = (40,40)
output_dicts_list = []
inference_times = []
visualise_outputs = False
save_anns_to_file = False
save_overlays_to_file = False
########################################################################################################################
# Perform actual inference for each image
########################################################################################################################
with detection_graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, 2048, 2048)
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
for fName in FNAMES:
image_path = os.path.join(PATH_TO_TEST_IMAGES_DIR, '{}/image/image_{}.png'.format(fName,fName))
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
start = datetime.datetime.now()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
# output_dict = run_inference_for_single_image(image_np, detection_graph)
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image_np, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
end = datetime.datetime.now()
elapsed = end - start
print("Inference for one image: {}.{}s".format(elapsed.seconds,round(elapsed.microseconds,2)))
inference_times.append(elapsed.total_seconds())
if visualise_outputs:
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=1)
plt.figure(figsize=IMAGE_SIZE)
plt.title("Image {}".format(image_path[:-4]))
plt.imshow(image_np)
plt.show()
plt.close()
# Keeping only worms which scored > 0.5
found_worms = np.where(output_dict['detection_scores'] > 0.5)
output_dict['detection_boxes'] = output_dict['detection_boxes'][found_worms]
output_dict['detection_classes'] = output_dict['detection_classes'][found_worms]
output_dict['detection_scores'] = output_dict['detection_scores'][found_worms]
output_dict['detection_masks'] = output_dict['detection_masks'][found_worms]
output_dict['skeletons'] = []
output_dict['frame_num'] = fName
for m in output_dict['detection_masks']:
output_dict['skeletons'].append(skeletonize(m).astype(np.uint8))
OUTPUT_DIR_PATH = os.path.join('./data/inference_outputs', MODEL_NAME, dataset)
if save_anns_to_file:
#Save outputs to Pickle file
os.makedirs(os.path.join(OUTPUT_DIR_PATH, 'annotations'), exist_ok=True)
ANNS_OUTPUT_PATH = os.path.join(OUTPUT_DIR_PATH,'annotations', fName) + '.pickle'
with open(ANNS_OUTPUT_PATH, 'wb') as fp:
pickle.dump(output_dict, fp, protocol=pickle.HIGHEST_PROTOCOL)
if save_overlays_to_file:
#save image with annotations overlaid to file
os.makedirs(os.path.join(OUTPUT_DIR_PATH, 'images'), exist_ok=True)
IMG_OUTPUT_PATH = os.path.join(OUTPUT_DIR_PATH,'images', fName) + '.png'
plt.figure(figsize=IMAGE_SIZE)
# If the image ahsn't already been visualised, we need
# to add the masks and boxes now
if not visualise_outputs:
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=1)
plt.imshow(image_np)
plt.axis('off')
plt.savefig(fname=IMG_OUTPUT_PATH, bbox_inches='tight', pad_inches=0)
plt.close
output_dicts_list.append(output_dict)
print("Finished analysing {} images.".format(NUM_IMAGES))
mean_time = round(sum(inference_times[1:]) / (len(inference_times)-1), 3)
fps = round((1/mean_time), 3)
print("Average inference time for {} images: {}s ({} fps)".format(NUM_IMAGES, mean_time, fps))