You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, really interesting work! Thanks for the tool.
I am trying to reproduce the plots from Figure 1 of the paper regarding the PBMC analysis using Spectra.
I annotated the data using the process from the notebooks provided.
I am using the following code to reproduce the analysis.
annotations = #gene sets from supplementary table 1 of paper
adata = # annotated data
# gene sets for cell type allocation from the notebook Kartha_PBMC_annotation.ipynb
M_path_names = ['M_IL17A_response', 'M_angiogenic-effectors', 'M_mac_CSF1_response', 'M_gran_CSF2_response', 'mast_granule-exocytosis', 'DC_CD40L_response', 'DC_antigen-crosspresentation', 'DC_LPS_response', 'Mac_LPS_response', 'Mac_CSF1_response', 'Mac_IL4-IL13_response', 'Mac_IFNG_response', 'p-DC_CpG-TLR9_response']
BP_path_names = ['B_Breg_UP', 'B_effector-1_UP', 'B_CD40L_response', 'B_IL2_response', 'B_effector-2_UP', 'B_IgM-ligation_response']
global_path_names = ['all_pyrimidine_metabolism', 'all_ros_response', 'all_autophagic-cell-death', 'all_DNA-methylation', 'all_eicosanoid_metabolism', 'all_MHC-I-presentation', 'all_bile-acid_synthesis', 'all_MHC-II-presentation', 'all_autophagy-selective', 'all_heparan-sulfate_degradation', 'all_galactose_metabolism', 'all_transmembrane-transport-lysosome', 'all_steroid_metabolism', 'all_mitophagy', 'all_complement_production', 'all_mitophagy_regulation_positive', 'all_autophagy-peroxisome', 'all_DNA-demethylation', 'all_coagulation-factor_production', 'all_GABA-shunt', 'all_selenoamino-acid_metabolism', 'all_pyruvate_metabolism', 'all_creatinine_metabolism', 'all_peroxisome-component', 'all_glyoxylate-dicarboxylate_metabolism', 'all_DNA-repair', 'all_oxidative-phosphorylation', 'all_n-glycan_degradation', 'all_PI3K-AKT-mTOR_signaling', 'all_glutathione_metabolism', 'all_chondroitine-sulfate_degradation', 'all_o-glycan_synthesis', 'all_glycogenesis', 'all_pyroptosis', 'all_CoA_synthesis', 'all_retinol_metabolism', 'all_transmembrane-transport-golgi', 'all_transmembrane-transport-cellmembrane', 'all_protein-degradation-proteasome', 'all_circadian-rhythm', 'all_type-I-ifn-response', 'all_LYS_metabolism', 'all_multidrug-resistance', 'all_ROS-detoxification', 'all_phosphoinositide_signaling', 'all_IL6-JAK-STAT3_signaling', 'all_Beta-Ala_metabolism', 'all_thrombolysis-factor_production', 'all_TNF-via-NFkB_signaling', 'all_cyclic-nucleotide_metabolism', 'all_SASP', 'all_fatty-acid_synthesis', 'all_carnitine-shuttle', 'all_sphingolipid_metabolism', 'all_biotin_metabolism', 'all_posttranslation-modification', 'all_apoptosis', 'all_hedgehog_signaling', 'all_p53-signaling', 'all_TYR_metabolism', 'all_porphyrine-heme_metabolism', 'all_MET_metabolism', 'all_ARG-PRO_metabolism', 'all_lipophagy', 'all_TCA-cycle', 'all_fatty-acid-metabolism', 'all_CYS_metabolism', 'all_wnt-beta-catenin-signaling', 'all_glycerin-SER-THR_metabolism', 'all_autophagy_regulation_positive', 'all_pterin_synthesis', 'all_platelet-activation-factor_production', 'all_purine_metabolism', 'all_xenobiotics_metabolism', 'all_NOD-like-receptor_signaling', 'all_autophagy-chaperone-mediated', 'all_cholesterol_metabolism', 'all_macroautophagy', 'all_mTORC1_signaling', 'all_citric-acid-cycle', 'all_autophagy-of-mitochondria_regulation_positive', 'all_cholesterol-homeostasis', 'all_keratan-sulfate_degradation', 'all_iron-uptake-and-storage', 'all_GPI-anchor_synthesis', 'all_glycolysis', 'all_hyaluronan_metabolism', 'all_ALA-ASP_metabolism', 'all_purine_synthesis', 'all_G2M-transition', 'all_osmotic-stress-response', 'all_ethanol_metabolism', 'all_keratan-sulfate_synthesis', 'all_HIS_metabolism', 'all_ketone-body_metabolism', 'all_glycogenolysis', 'all_transmembrane-transport-mitochondrial', 'all_RIG-I-like-receptor_signaling', 'all_propanoate_metabolism', 'all_pyrimidine_synthesis', 'all_riboflavin_metabolism', 'all_type-II-ifn-response', 'all_actin-cytoskeleton_regulation', 'all_nucleotide_metabolism', 'all_VAL-LEU-ILE_metabolism', 'all_microautophagy-lysosomal', 'all_hypoxia-response', 'all_urea-cycle', 'all_n-glycan_synthesis', 'all_CYP_metabolism', 'all_fatty-acid-beta-oxidation-mitochondrial', 'all_JAK-STAT_signaling', 'all_reticulophagy', 'all_amino-sugar-nucleotide-sugar_metabolism', 'all_pentose-phosphate-pathway', 'all_lactate_production', 'all_autophagy-nucleus', 'all_MYC_targets', 'all_NOTCH_signaling', 'all_ascorbate-uptake', 'all_autophagy-of-mitochondria', 'all_fatty-acid-beta-oxidation-peroxisomal', 'all_TLR_signaling', 'all_chondroitine-and-heparan-sulfate_synthesis', 'all_inositol-phosphate_metabolism', 'all_ubiquinone_synthesis', 'all_PHE_metabolism', 'all_unfolded-protein-response', 'all_polyamines_metabolism', 'all_transmembrane-transport-ER', 'all_taurine-hypotaurine_metabolism', 'all_exocytosis', 'all_histone-methylation', 'all_fructose-mannose_metabolism', 'all_cytosolic-DNA-sensing_signaling', 'all_triacylglycerol_synthesis', 'all_mitotic-spindle-component', 'all_GLU_metabolism', 'all_glycerophospholipid_metabolism', 'all_thiamin_metabolism', 'all_TRP_metabolism', 'all_macroautophagy_regulation_positive', 'all_G1S-transition', 'all_DNA_synthesis', 'all_folate_metabolism', 'all_nucleophagy-late', 'all_NAD_metabolism', 'leuko_ROS_production', 'leuko_transendothelial-migration']
TNK_path_names = ['TNK_cytotoxicity-effectors', 'TNK_IL2-STAT5-signaling', 'TNK_IL2_response', 'TNK_PD-1_signaling', 'T_IL4_response', 'T_IL21_response', 'T_tcr-activation', 'NK_IL15_response', 'CD4-T_TH2_UP', 'CD4-T_TH17_UP', 'CD4-T_TH1_UP', 'CD4-T_TFH_UP', 'CD4-T_IL4_response', 'CD4-T_TH22_UP', 'CD4-T_IL12_response', 'CD4-T_TH9_UP', 'CD8-T_tumor-reactive-like_UP', 'CD8-T_terminal-exhaustion', 'CD8-T_IL12_response', 'Treg_FoxP3-stabilization']
annotations_per_cell_type ={'M':{},'BP':{},'TNK':{},'global':{}}
print('Gene sets excluded (not found in any of the types)')
for path in annotations.keys():
if path in M_path_names:
annotations_per_cell_type['M'][path] = annotations[path]
elif path in BP_path_names:
annotations_per_cell_type['BP'][path] = annotations[path]
elif path in TNK_path_names:
annotations_per_cell_type['TNK'][path] = annotations[path]
elif path in global_path_names:
annotations_per_cell_type['global'][path] = annotations[path]
else:
print(path)
#λ of 0.01, δ of 0.001 and ρ of 0.001. - From the paper
model = spc.est_spectra(adata=adata,
gene_set_dictionary=annotations_per_cell_type ,
use_highly_variable=True,
cell_type_key= 'Cell_type',
use_cell_types = True,
use_weights=True,
lam=0.01,
delta=0.001,
kappa=None,
rho=0.001,
n_top_vals=50,
label_factors=True,
overlap_threshold=0.2,
clean_gs = True,
min_gs_num = 3,
verbose = True,
num_epochs=10000
)
len(adata.var[adata.var['spectra_vocab']]) # = 11,884 #which is different from the 11,840 mentioned in the paper
The gene sets I am using are from the supplementary table 1. But it does not agree completely from the gene sets used in the notebooks, some seem to be missing. I'm not sure if I'm missing any steps.
It would be great if you could help me with this. Thanks!
The text was updated successfully, but these errors were encountered:
Hello, really interesting work! Thanks for the tool.
I am trying to reproduce the plots from Figure 1 of the paper regarding the PBMC analysis using Spectra.
I annotated the data using the process from the notebooks provided.
I am using the following code to reproduce the analysis.
The gene sets I am using are from the supplementary table 1. But it does not agree completely from the gene sets used in the notebooks, some seem to be missing. I'm not sure if I'm missing any steps.
It would be great if you could help me with this. Thanks!
The text was updated successfully, but these errors were encountered: