forked from JuliaSparse/SparseArrays.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhigherorderfns.jl
779 lines (724 loc) · 34.4 KB
/
higherorderfns.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
# This file is a part of Julia. License is MIT: https://julialang.org/license
# These tests cover the higher order functions specialized for sparse arrays defined in
# base/sparse/higherorderfns.jl, particularly map[!]/broadcast[!] for SparseVectors and
# SparseMatrixCSCs at present.
module HigherOrderFnsTests
using Test
using SparseArrays
using LinearAlgebra
using Random
include("forbidproperties.jl")
function test_map_and_map!(A, alloc_tests)
# --> test map entry point
fA = Array(A)
shapeA = size(A)
@test map(sin, A) == sparse(map(sin, fA))
@test map(cos, A) == sparse(map(cos, fA))
# --> test map! entry point
fX = copy(fA); X = similar(A)
map!(sin, X, A); X = similar(A) # warmup for @allocated
map!(sin, X, A); X = similar(A) # warmup for @allocated
if @allocated(map!(sin, X, A)) != 0 && alloc_tests
println(stderr, "A in test_map_and_map! is ", A)
end
X = similar(A)
@test @allocated(map!(sin, X, A)) == 0 || !alloc_tests
@test map!(sin, X, A) == sparse(map!(sin, fX, fA))
@test map!(cos, X, A) == sparse(map!(cos, fX, fA))
@test_throws DimensionMismatch map!(sin, X, spzeros((shapeA .- 1)...))
end
@testset "map[!] implementation specialized for a single (input) sparse vector/matrix" begin
N, M = 10, 12
for shapeA in ((N,), (N, M))
A = sprand(shapeA..., 0.4)
nonzeros(A)[sin.(nonzeros(A)) .== 0] .= .0
nonzeros(A)[cos.(nonzeros(A)) .== 0] .= .0
A = dropzeros(A)
test_map_and_map!(A, false)
test_map_and_map!(A, false)
test_map_and_map!(A, true)
end
# https://github.com/JuliaLang/julia/issues/37819
Z = spzeros(Float64, Int32, 50000, 50000)
@test isa(-Z, SparseMatrixCSC{Float64, Int32})
end
@testset "map[!] implementation specialized for a pair of (input) sparse vectors/matrices" begin
N, M = 10, 12
f(x, y) = x + y + 1
for shapeA in ((N,), (N, M))
A, Bo = sprand(shapeA..., 0.3), sprand(shapeA..., 0.3)
B = ndims(Bo) == 1 ? SparseVector{Float32, Int32}(Bo) : SparseMatrixCSC{Float32,Int32}(Bo)
# use different types to check internal type stability via allocation tests below
fA, fB = map(Array, (A, B))
# --> test map entry point
@test map(+, A, B) == sparse(map(+, fA, fB))
@test map(*, A, B) == sparse(map(*, fA, fB))
@test map(f, A, B) == sparse(map(f, fA, fB))
@test_throws DimensionMismatch map(+, A, spzeros((shapeA .- 1)...))
# --> test map! entry point
fX = map(+, fA, fB); X = sparse(fX)
map!(+, X, A, B); X = sparse(fX) # warmup for @allocated
@test (@allocated map!(+, X, A, B)) < 500
@test map!(+, X, A, B) == sparse(map!(+, fX, fA, fB))
fX = map(*, fA, fB); X = sparse(fX)
map!(*, X, A, B); X = sparse(fX) # warmup for @allocated
@test (@allocated map!(*, X, A, B)) < 500
@test map!(*, X, A, B) == sparse(map!(*, fX, fA, fB))
@test map!(f, X, A, B) == sparse(map!(f, fX, fA, fB))
@test_throws DimensionMismatch map!(f, X, A, spzeros((shapeA .- 1)...))
end
# https://github.com/JuliaLang/julia/issues/37819
Z = spzeros(Float64, Int32, 50000, 50000)
@test isa(Z + Z, SparseMatrixCSC{Float64, Int32})
end
@testset "map[!] implementation capable of handling >2 (input) sparse vectors/matrices" begin
N, M = 10, 12
f(x, y, z) = x + y + z + 1
for shapeA in ((N,), (N, M))
A, B, Co = sprand(shapeA..., 0.2), sprand(shapeA..., 0.2), sprand(shapeA..., 0.2)
C = ndims(Co) == 1 ? SparseVector{Float32,Int32}(Co) : SparseMatrixCSC{Float32,Int32}(Co)
# use different types to check internal type stability via allocation tests below
fA, fB, fC = map(Array, (A, B, C))
# --> test map entry point
@test map(+, A, B, C) == sparse(map(+, fA, fB, fC))
@test map(*, A, B, C) == sparse(map(*, fA, fB, fC))
@test map(f, A, B, C) == sparse(map(f, fA, fB, fC))
@test_throws DimensionMismatch map(+, A, B, spzeros(N, M - 1))
# --> test map! entry point
fX = map(+, fA, fB, fC); X = sparse(fX)
map!(+, X, A, B, C); X = sparse(fX) # warmup for @allocated
@test (@allocated map!(+, X, A, B, C)) < 500
@test map!(+, X, A, B, C) == sparse(map!(+, fX, fA, fB, fC))
fX = map(*, fA, fB, fC); X = sparse(fX)
map!(*, X, A, B, C); X = sparse(fX) # warmup for @allocated
@test (@allocated map!(*, X, A, B, C)) < 500
@test map!(*, X, A, B, C) == sparse(map!(*, fX, fA, fB, fC))
@test map!(f, X, A, B, C) == sparse(map!(f, fX, fA, fB, fC))
@test_throws DimensionMismatch map!(f, X, A, B, spzeros((shapeA .- 1)...))
end
end
@testset "broadcast! implementation specialized for solely an output sparse vector/matrix (no inputs)" begin
N, M, p = 10, 12, 0.4
V, C = sprand(N, p), sprand(N, M, p)
fV, fC = Array(V), Array(C)
@test broadcast!(() -> 0, V) == sparse(broadcast!(() -> 0, fV))
@test broadcast!(() -> 0, C) == sparse(broadcast!(() -> 0, fC))
@test let z = 0, fz = 0; broadcast!(() -> z += 1, V) == broadcast!(() -> fz += 1, fV); end
@test let z = 0, fz = 0; broadcast!(() -> z += 1, C) == broadcast!(() -> fz += 1, fC); end
end
@testset "broadcast implementation specialized for a single (input) sparse vector/matrix" begin
# broadcast for a single (input) sparse vector/matrix falls back to map, tested
# extensively above. here we simply lightly exercise the relevant broadcast entry
# point.
N, M, p = 10, 12, 0.4
a, A = sprand(N, p), sprand(N, M, p)
fa, fA = Array(a), Array(A)
@test broadcast(sin, a) == sparse(broadcast(sin, fa))
@test broadcast(sin, A) == sparse(broadcast(sin, fA))
# also test the typed broadcast
@test broadcast(convert, Float32, A) == sparse(broadcast(convert, Float32, fA))
end
@testset "broadcast! implementation specialized for a single (input) sparse vector/matrix" begin
N, M, p = 10, 12, 0.3
f(x, y) = x + y + 1
mats = (sprand(N, M, p), sprand(N, 1, p), sprand(1, M, p), sprand(1, 1, 1.0), spzeros(1, 1))
vecs = (sprand(N, p), sprand(1, 1.0), spzeros(1))
# --> test with matrix destination (Z/fZ)
fZ = Array(first(mats))
for Xo in (mats..., vecs...)
X = ndims(Xo) == 1 ? SparseVector{Float32,Int32}(Xo) : SparseMatrixCSC{Float32,Int32}(Xo)
shapeX, fX = size(X), Array(X)
# --> test broadcast! entry point / zero-preserving op
broadcast!(sin, fZ, fX); Z = sparse(fZ)
broadcast!(sin, Z, X); Z = sparse(fZ) # warmup for @allocated
@test (@allocated broadcast!(sin, Z, X)) < 500
@test broadcast!(sin, Z, X) == sparse(broadcast!(sin, fZ, fX))
# --> test broadcast! entry point / not-zero-preserving op
broadcast!(cos, fZ, fX); Z = sparse(fZ)
broadcast!(cos, Z, X); Z = sparse(fZ) # warmup for @allocated
@test (@allocated broadcast!(cos, Z, X)) < 500
@test broadcast!(cos, Z, X) == sparse(broadcast!(cos, fZ, fX))
# --> test shape checks for broadcast! entry point
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.check_broadcast_axes(axes(Z), spzeros((shapeX .- 1)...))
catch
@test_throws DimensionMismatch broadcast!(sin, Z, spzeros((shapeX .- 1)...))
end
end
# --> test with vector destination (V/fV)
fV = Array(first(vecs))
for Xo in vecs # vector target
X = SparseVector{Float32,Int32}(Xo)
shapeX, fX = size(X), Array(X)
# --> test broadcast! entry point / zero-preserving op
broadcast!(sin, fV, fX); V = sparse(fV)
broadcast!(sin, V, X); V = sparse(fV) # warmup for @allocated
@test (@allocated broadcast!(sin, V, X)) < 500
@test broadcast!(sin, V, X) == sparse(broadcast!(sin, fV, fX))
# --> test broadcast! entry point / not-zero-preserving
broadcast!(cos, fV, fX); V = sparse(fV)
broadcast!(cos, V, X); V = sparse(fV) # warmup for @allocated
@test (@allocated broadcast!(cos, V, X)) < 500
@test broadcast!(cos, V, X) == sparse(broadcast!(cos, fV, fX))
# --> test shape checks for broadcast! entry point
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.check_broadcast_axes(axes(V), spzeros((shapeX .- 1)...))
catch
@test_throws DimensionMismatch broadcast!(sin, V, spzeros((shapeX .- 1)...))
end
end
# Tests specific to #19895, i.e. for broadcast!(identity, C, A) specializations
Z = copy(first(mats)); fZ = Array(Z)
V = copy(first(vecs)); fV = Array(V)
for X in (mats..., vecs...)
@test broadcast!(identity, Z, X) == sparse(broadcast!(identity, fZ, Array(X)))
X isa SparseVector && @test broadcast!(identity, V, X) == sparse(broadcast!(identity, fV, Array(X)))
end
end
@testset "broadcast[!] implementation specialized for pairs of (input) sparse vectors/matrices" begin
N, M, p = 10, 12, 0.3
f(x, y) = x + y + 1
mats = (sprand(N, M, p), sprand(N, 1, p), sprand(1, M, p), sprand(1, 1, 1.0), spzeros(1, 1))
vecs = (sprand(N, p), sprand(1, 1.0), spzeros(1))
tens = (mats..., vecs...)
fZ = Array(first(mats))
for Xo in tens
X = ndims(Xo) == 1 ? SparseVector{Float32,Int32}(Xo) : SparseMatrixCSC{Float32,Int32}(Xo)
# use different types to check internal type stability via allocation tests below
shapeX, fX = size(X), Array(X)
for Y in tens
fY = Array(Y)
# --> test broadcast entry point
@test broadcast(+, X, Y) == sparse(broadcast(+, fX, fY))
@test broadcast(-, X, Y) == sparse(broadcast(-, fX, fY))
@test broadcast(*, X, Y) == sparse(broadcast(*, fX, fY))
@test broadcast(f, X, Y) == sparse(broadcast(f, fX, fY))
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.combine_axes(spzeros((shapeX .- 1)...), Y)
catch
@test_throws DimensionMismatch broadcast(+, spzeros((shapeX .- 1)...), Y)
end
# --> test broadcast! entry point / +-like zero-preserving op
broadcast!(+, fZ, fX, fY); Z = sparse(fZ)
broadcast!(+, Z, X, Y); Z = sparse(fZ) # warmup for @allocated
@test (@allocated broadcast!(+, Z, X, Y)) < 500
@test broadcast!(+, Z, X, Y) == sparse(broadcast!(+, fZ, fX, fY))
# --> test broadcast! entry point / *-like zero-preserving op
broadcast!(*, fZ, fX, fY); Z = sparse(fZ)
broadcast!(*, Z, X, Y); Z = sparse(fZ) # warmup for @allocated
@test (@allocated broadcast!(*, Z, X, Y)) < 500
@test broadcast!(*, Z, X, Y) == sparse(broadcast!(*, fZ, fX, fY))
# --> test broadcast! entry point / not zero-preserving op
broadcast!(f, fZ, fX, fY); Z = sparse(fZ)
broadcast!(f, Z, X, Y); Z = sparse(fZ) # warmup for @allocated
@test (@allocated broadcast!(f, Z, X, Y)) < 500
@test broadcast!(f, Z, X, Y) == sparse(broadcast!(f, fZ, fX, fY))
# --> test shape checks for both broadcast and broadcast! entry points
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.check_broadcast_axes(axes(Z), spzeros((shapeX .- 1)...), Y)
catch
@test_throws DimensionMismatch broadcast!(f, Z, spzeros((shapeX .- 1)...), Y)
end
end
end
# fix#23857
@test sparse([1; 0]) ./ [1] == sparse([1.0; 0.0])
@test isequal(sparse([1 2; 1 0]) ./ [1; 0], sparse([1.0 2; Inf NaN]))
@test sparse([1 0]) ./ [1] == sparse([1.0 0.0])
@test isequal(sparse([1 2; 1 0]) ./ [1 0], sparse([1.0 Inf; 1 NaN]))
@test sparse([1]) .\ sparse([1; 0]) == sparse([1.0; 0.0])
@test isequal(sparse([1; 0]) .\ sparse([1 2; 1 0]), sparse([1.0 2; Inf NaN]))
@test sparse([1]) .\ sparse([1 0]) == sparse([1.0 0.0])
@test isequal(sparse([1 0]) .\ sparse([1 2; 1 0]), sparse([1.0 Inf; 1 NaN]))
end
@testset "broadcast[!] implementation capable of handling >2 (input) sparse vectors/matrices" begin
N, M, p = 10, 12, 0.3
f(x, y, z) = x + y + z + 1
mats = (sprand(N, M, p), sprand(N, 1, p), sprand(1, M, p), sprand(1, 1, 1.0), spzeros(1, 1))
vecs = (sprand(N, p), sprand(1, 1.0), spzeros(1))
tens = (mats..., vecs...)
for Xo in tens
X = ndims(Xo) == 1 ? SparseVector{Float32,Int32}(Xo) : SparseMatrixCSC{Float32,Int32}(Xo)
# use different types to check internal type stability via allocation tests below
shapeX, fX = size(X), Array(X)
for Y in tens, Z in tens
fY, fZ = Array(Y), Array(Z)
# --> test broadcast entry point
@test broadcast(+, X, Y, Z) == sparse(broadcast(+, fX, fY, fZ))
@test broadcast(*, X, Y, Z) == sparse(broadcast(*, fX, fY, fZ))
@test broadcast(f, X, Y, Z) == sparse(broadcast(f, fX, fY, fZ))
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.combine_axes(spzeros((shapeX .- 1)...), Y, Z)
catch
@test_throws DimensionMismatch broadcast(+, spzeros((shapeX .- 1)...), Y, Z)
end
# --> test broadcast! entry point / +-like zero-preserving op
fQ = broadcast(+, fX, fY, fZ); Q = sparse(fQ)
broadcast!(+, Q, X, Y, Z); Q = sparse(fQ) # warmup for @allocated
@test (@allocated broadcast!(+, Q, X, Y, Z)) < 500
@test broadcast!(+, Q, X, Y, Z) == sparse(broadcast!(+, fQ, fX, fY, fZ))
# --> test broadcast! entry point / *-like zero-preserving op
fQ = broadcast(*, fX, fY, fZ); Q = sparse(fQ)
broadcast!(*, Q, X, Y, Z); Q = sparse(fQ) # warmup for @allocated
@test (@allocated broadcast!(*, Q, X, Y, Z)) < 500
@test broadcast!(*, Q, X, Y, Z) == sparse(broadcast!(*, fQ, fX, fY, fZ))
# --> test broadcast! entry point / not zero-preserving op
fQ = broadcast(f, fX, fY, fZ); Q = sparse(fQ)
broadcast!(f, Q, X, Y, Z); Q = sparse(fQ) # warmup for @allocated
@test (@allocated broadcast!(f, Q, X, Y, Z)) < 500
@test broadcast!(f, Q, X, Y, Z) == sparse(broadcast!(f, fQ, fX, fY, fZ))
# --> test shape checks for both broadcast and broadcast! entry points
# TODO strengthen this test, avoiding dependence on checking whether
# check_broadcast_axes throws to determine whether sparse broadcast should throw
try
Base.Broadcast.check_broadcast_axes(axes(Q), spzeros((shapeX .- 1)...), Y, Z)
catch
@test_throws DimensionMismatch broadcast!(f, Q, spzeros((shapeX .- 1)...), Y, Z)
end
end
end
end
@testset "sparse map/broadcast with result eltype not a concrete subtype of Number (#19561/#19589)" begin
N = 4
A, fA = sparse(1.0I, N, N), Matrix(1.0I, N, N)
B, fB = spzeros(1, N), zeros(1, N)
intorfloat_zeropres(xs...) = all(iszero, xs) ? zero(Float64) : Int(1)
intorfloat_notzeropres(xs...) = all(iszero, xs) ? Int(1) : zero(Float64)
for fn in (intorfloat_zeropres, intorfloat_notzeropres)
@test map(fn, A) == sparse(map(fn, fA))
@test broadcast(fn, A) == sparse(broadcast(fn, fA))
@test broadcast(fn, A, B) == sparse(broadcast(fn, fA, fB))
@test broadcast(fn, B, A) == sparse(broadcast(fn, fB, fA))
end
for fn in (intorfloat_zeropres,)
@test broadcast(fn, A, B, A) == sparse(broadcast(fn, fA, fB, fA))
end
end
@testset "broadcast[!] over combinations of scalars and sparse vectors/matrices" begin
N, M, p = 10, 12, 0.5
elT = Float64
s = Float32(2.0)
V = sprand(elT, N, p)
Vᵀ = transpose(sprand(elT, 1, N, p))
A = sprand(elT, N, M, p)
Aᵀ = transpose(sprand(elT, M, N, p))
fV, fA, fVᵀ, fAᵀ = Array(V), Array(A), Array(Vᵀ), Array(Aᵀ)
# test combinations involving one to three scalars and one to five sparse vectors/matrices
spargseq, dargseq = Iterators.cycle((A, V, Aᵀ, Vᵀ)), Iterators.cycle((fA, fV, fAᵀ, fVᵀ))
for nargs in 1:5 # number of tensor arguments
nargsl = cld(nargs, 2) # number in "left half" of tensor arguments
nargsr = fld(nargs, 2) # number in "right half" of tensor arguments
spargsl = tuple(Iterators.take(spargseq, nargsl)...) # "left half" of tensor args
spargsr = tuple(Iterators.take(spargseq, nargsr)...) # "right half" of tensor args
dargsl = tuple(Iterators.take(dargseq, nargsl)...) # "left half" of tensor args, densified
dargsr = tuple(Iterators.take(dargseq, nargsr)...) # "right half" of tensor args, densified
for (sparseargs, denseargs) in ( # argument combinations including scalars
# a few combinations involving one scalar
((s, spargsl..., spargsr...), (s, dargsl..., dargsr...)),
((spargsl..., s, spargsr...), (dargsl..., s, dargsr...)),
((spargsl..., spargsr..., s), (dargsl..., dargsr..., s)),
# a few combinations involving two scalars
((s, spargsl..., s, spargsr...), (s, dargsl..., s, dargsr...)),
((s, spargsl..., spargsr..., s), (s, dargsl..., dargsr..., s)),
((spargsl..., s, spargsr..., s), (dargsl..., s, dargsr..., s)),
((s, s, spargsl..., spargsr...), (s, s, dargsl..., dargsr...)),
((spargsl..., s, s, spargsr...), (dargsl..., s, s, dargsr...)),
((spargsl..., spargsr..., s, s), (dargsl..., dargsr..., s, s)),
# a few combinations involving three scalars
((s, spargsl..., s, spargsr..., s), (s, dargsl..., s, dargsr..., s)),
((s, spargsl..., s, s, spargsr...), (s, dargsl..., s, s, dargsr...)),
((spargsl..., s, s, spargsr..., s), (dargsl..., s, s, dargsr..., s)),
((spargsl..., s, s, s, spargsr...), (dargsl..., s, s, s, dargsr...)), )
# test broadcast entry point
@test broadcast(*, sparseargs...) == sparse(broadcast(*, denseargs...))
@test isa(@inferred(broadcast(*, sparseargs...)), SparseMatrixCSC{elT})
# test broadcast! entry point
fX = broadcast(*, sparseargs...); X = sparse(fX)
@test broadcast!(*, X, sparseargs...) == sparse(broadcast!(*, fX, denseargs...))
@test isa(@inferred(broadcast!(*, X, sparseargs...)), SparseMatrixCSC{elT})
X = sparse(fX) # reset / warmup for @allocated test
# And broadcasting over Transposes currently requires making a CSC copy, so we must account for that in the bounds
@test (@allocated broadcast!(*, X, sparseargs...)) <= (sum(x->isa(x, Transpose) ? @allocated(SparseMatrixCSC(x)) + 128 : 0, sparseargs) + 128 + 900) # about zero to 3k bytes
end
end
# test combinations at the limit of inference (eight arguments net)
for (sparseargs, denseargs) in (
((s, s, s, A, s, s, s, s), (s, s, s, fA, s, s, s, s)), # seven scalars, one sparse matrix
((s, s, V, s, s, A, s, s), (s, s, fV, s, s, fA, s, s)), # six scalars, two sparse vectors/matrices
((s, s, V, s, A, s, V, s), (s, s, fV, s, fA, s, fV, s)), # five scalars, three sparse vectors/matrices
((s, V, s, A, s, V, s, A), (s, fV, s, fA, s, fV, s, fA)), # four scalars, four sparse vectors/matrices
((s, V, A, s, V, A, s, A), (s, fV, fA, s, fV, fA, s, fA)), # three scalars, five sparse vectors/matrices
((V, A, V, s, A, V, A, s), (fV, fA, fV, s, fA, fV, fA, s)), # two scalars, six sparse vectors/matrices
((V, A, V, A, s, V, A, V), (fV, fA, fV, fA, s, fV, fA, fV)) ) # one scalar, seven sparse vectors/matrices
# test broadcast entry point
@test broadcast(*, sparseargs...) == sparse(broadcast(*, denseargs...))
@test isa(@inferred(broadcast(*, sparseargs...)), SparseMatrixCSC{elT})
# test broadcast! entry point
fX = broadcast(*, sparseargs...); X = sparse(fX)
@test broadcast!(*, X, sparseargs...) == sparse(broadcast!(*, fX, denseargs...))
@test isa(@inferred(broadcast!(*, X, sparseargs...)), SparseMatrixCSC{elT})
X = sparse(fX) # reset / warmup for @allocated test
@test (@allocated broadcast!(*, X, sparseargs...)) <= 900
end
end
@testset "broadcast[!] over combinations of scalars, sparse arrays, structured matrices, and dense vectors/matrices" begin
N, p = 10, 0.4
s = rand()
V = sprand(N, p)
A = sprand(N, N, p)
Z = copy(A)
sparsearrays = (V, A)
fV, fA = map(Array, sparsearrays)
D = Diagonal(rand(N))
B = Bidiagonal(rand(N), rand(N - 1), :U)
T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1))
S = SymTridiagonal(rand(N), rand(N - 1))
structuredarrays = (D, B, T, S)
fstructuredarrays = map(Array, structuredarrays)
for (X, fX) in zip(structuredarrays, fstructuredarrays)
@test (Q = broadcast(+, V, A, X); Q isa SparseMatrixCSC && Q == sparse(broadcast(+, fV, fA, fX)))
@test broadcast!(+, Z, V, A, X) == sparse(broadcast(+, fV, fA, fX))
@test (Q = broadcast(*, s, V, A, X); Q isa SparseMatrixCSC && Q == sparse(broadcast(*, s, fV, fA, fX)))
@test broadcast!(*, Z, s, V, A, X) == sparse(broadcast(*, s, fV, fA, fX))
for (Y, fY) in zip(structuredarrays, fstructuredarrays)
@test broadcast!(+, Z, X, Y) == sparse(broadcast(+, fX, fY))
@test broadcast!(*, Z, X, Y) == sparse(broadcast(*, fX, fY))
end
end
C = Array(sprand(N, 0.4))
M = Array(sprand(N, N, 0.4))
densearrays = (C, M)
fD, fB = Array(D), Array(B)
for X in densearrays
@test broadcast!(+, Z, D, X) == sparse(broadcast(+, fD, X))
@test broadcast!(*, Z, s, B, X) == sparse(broadcast(*, s, fB, X))
@test broadcast(+, V, B, X)::SparseMatrixCSC == sparse(broadcast(+, fV, fB, X))
@test broadcast!(+, Z, V, B, X) == sparse(broadcast(+, fV, fB, X))
@test broadcast(+, V, A, X)::SparseMatrixCSC == sparse(broadcast(+, fV, fA, X))
@test broadcast!(+, Z, V, A, X) == sparse(broadcast(+, fV, fA, X))
@test broadcast(*, s, V, A, X)::SparseMatrixCSC == sparse(broadcast(*, s, fV, fA, X))
@test broadcast!(*, Z, s, V, A, X) == sparse(broadcast(*, s, fV, fA, X))
# Issue #20954 combinations of sparse arrays and Adjoint/Transpose vectors
if X isa Vector
@test broadcast(+, A, X')::SparseMatrixCSC == sparse(broadcast(+, fA, X'))
@test broadcast(*, V, X')::SparseMatrixCSC == sparse(broadcast(*, fV, X'))
end
end
@test V .+ ntuple(identity, N) isa Vector
@test A .+ ntuple(identity, N) isa Matrix
end
@testset "map[!] over combinations of sparse and structured matrices" begin
N, p = 10, 0.4
A = sprand(N, N, p)
Z, fA = copy(A), Array(A)
D = Diagonal(rand(N))
B = Bidiagonal(rand(N), rand(N - 1), :U)
T = Tridiagonal(rand(N - 1), rand(N), rand(N - 1))
S = SymTridiagonal(rand(N), rand(N - 1))
structuredarrays = (D, B, T, S)
fstructuredarrays = map(Array, structuredarrays)
for (X, fX) in zip(structuredarrays, fstructuredarrays)
@test map!(sin, Z, X) == sparse(map(sin, fX))
@test map!(cos, Z, X) == sparse(map(cos, fX))
@test (Q = map(+, A, X); Q isa SparseMatrixCSC && Q == sparse(map(+, fA, fX)))
@test map!(+, Z, A, X) == sparse(map(+, fA, fX))
for (Y, fY) in zip(structuredarrays, fstructuredarrays)
@test map!(+, Z, X, Y) == sparse(map(+, fX, fY))
@test map!(*, Z, X, Y) == sparse(map(*, fX, fY))
@test (Q = map(+, X, A, Y); Q isa SparseMatrixCSC && Q == sparse(map(+, fX, fA, fY)))
@test map!(+, Z, X, A, Y) == sparse(map(+, fX, fA, fY))
end
end
end
# Older tests of sparse broadcast, now largely covered by the tests above
@testset "assorted tests of sparse broadcast over two input arguments" begin
N, p = 10, 0.3
A, B, CF = sprand(N, N, p), sprand(N, N, p), rand(N, N)
AF, BF, C = Array(A), Array(B), sparse(CF)
@test A .* B == AF .* BF
@test A[1,:] .* B == AF[1,:] .* BF
@test A[:,1] .* B == AF[:,1] .* BF
@test A .* B[1,:] == AF .* BF[1,:]
@test A .* B[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test A[1,:] .* BF == AF[1,:] .* BF
@test A[:,1] .* BF == AF[:,1] .* BF
@test A .* BF[1,:] == AF .* BF[1,:]
@test A .* BF[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test AF[1,:] .* B == AF[1,:] .* BF
@test AF[:,1] .* B == AF[:,1] .* BF
@test AF .* B[1,:] == AF .* BF[1,:]
@test AF .* B[:,1] == AF .* BF[:,1]
@test A .* B == AF .* BF
@test A[1,:] .* B == AF[1,:] .* BF
@test A[:,1] .* B == AF[:,1] .* BF
@test A .* B[1,:] == AF .* BF[1,:]
@test A .* B[:,1] == AF .* BF[:,1]
@test A .* 3 == AF .* 3
@test 3 .* A == 3 .* AF
@test A[1,:] .* 3 == AF[1,:] .* 3
@test A[:,1] .* 3 == AF[:,1] .* 3
@test A .- 3 == AF .- 3
@test 3 .- A == 3 .- AF
@test A .- B == AF .- BF
@test A - AF == zeros(size(AF))
@test AF - A == zeros(size(AF))
@test A[1,:] .- B == AF[1,:] .- BF
@test A[:,1] .- B == AF[:,1] .- BF
@test A .- B[1,:] == AF .- BF[1,:]
@test A .- B[:,1] == AF .- BF[:,1]
@test A .+ 3 == AF .+ 3
@test 3 .+ A == 3 .+ AF
@test A .+ B == AF .+ BF
@test A + AF == AF + A
@test (A .< B) == (AF .< BF)
@test (A .!= B) == (AF .!= BF)
@test A ./ 3 == AF ./ 3
@test A .\ 3 == AF .\ 3
@test 3 ./ A == 3 ./ AF
@test 3 .\ A == 3 .\ AF
@test A .\ C == AF .\ CF
@test A ./ C == AF ./ CF
@test A ./ CF[:,1] == AF ./ CF[:,1]
@test A .\ CF[:,1] == AF .\ CF[:,1]
@test BF ./ C == BF ./ CF
@test BF .\ C == BF .\ CF
@test A .^ 3 == AF .^ 3
@test 3 .^ A == 3 .^ AF
@test A .^ BF[:,1] == AF .^ BF[:,1]
@test BF[:,1] .^ A == BF[:,1] .^ AF
@test spzeros(0,0) + spzeros(0,0) == zeros(0,0)
@test spzeros(0,0) * spzeros(0,0) == zeros(0,0)
@test spzeros(1,0) .+ spzeros(2,1) == zeros(2,0)
@test spzeros(1,0) .* spzeros(2,1) == zeros(2,0)
@test spzeros(1,2) .+ spzeros(0,1) == zeros(0,2)
@test spzeros(1,2) .* spzeros(0,1) == zeros(0,2)
end
@testset "sparse vector broadcast of two arguments" begin
sv1, sv5 = sprand(1, 1.), sprand(5, 1.)
for (sa, sb) in ((sv1, sv1), (sv1, sv5), (sv5, sv1), (sv5, sv5))
fa, fb = Vector(sa), Vector(sb)
for f in (+, -, *, min, max)
@test @inferred(broadcast(f, sa, sb))::SparseVector == broadcast(f, fa, fb)
@test @inferred(broadcast(f, Vector(sa), sb))::SparseVector == broadcast(f, fa, fb)
@test @inferred(broadcast(f, sa, Vector(sb)))::SparseVector == broadcast(f, fa, fb)
@test @inferred(broadcast(f, SparseMatrixCSC(sa), sb))::SparseMatrixCSC == broadcast(f, reshape(fa, Val(2)), fb)
@test @inferred(broadcast(f, sa, SparseMatrixCSC(sb)))::SparseMatrixCSC == broadcast(f, fa, reshape(fb, Val(2)))
if length(fa) == length(fb)
@test @inferred(map(f, sa, sb))::SparseVector == broadcast(f, fa, fb)
end
end
if length(fa) == length(fb)
for f in (+, -)
@test @inferred(f(sa, sb))::SparseVector == f(fa, fb)
@test @inferred(f(Vector(sa), sb))::SparseVector == f(fa, fb)
@test @inferred(f(sa, Vector(sb)))::SparseVector == f(fa, fb)
end
end
end
end
@testset "aliasing and indexed assignment or broadcast!" begin
A = sparsevec([0, 0, 1, 1])
B = sparsevec([1, 1, 0, 0])
A .+= B
@test A == sparse([1,1,1,1])
A = sprandn(10, 10, 0.1)
fA = Array(A)
b = randn(10);
broadcast!(/, A, A, b)
@test A == fA ./ Array(b)
a = sparse([1,3,5])
b = sparse([3,1,2])
a[b] = a
@test a == [3,5,1]
a = sparse([3,2,1])
a[a] = [4,5,6]
@test a == [6,5,4]
A = sparse([1,2,3,4])
V = view(A, A)
@test V == A
V[1] = 2
@test V == A == [2,2,3,4]
V[1] = 2^30
@test V == A == [2^30, 2, 3, 4]
A = sparse([2,1,4,3])
V = view(A, :)
A[V] = (1:4) .+ 2^30
@test A == [2,1,4,3] .+ 2^30
A = sparse([2,1,4,3])
R = reshape(view(A, :), 2, 2)
A[R] = (1:4) .+ 2^30
@test A == [2,1,4,3] .+ 2^30
A = sparse([2,1,4,3])
R = reshape(A, 2, 2)
A[R] = (1:4) .+ 2^30
@test A == [2,1,4,3] .+ 2^30
# And broadcasting
a = sparse([1,3,5])
b = sparse([3,1,2])
a[b] .= a
@test a == [3,5,1]
a = sparse([3,2,1])
a[a] .= [4,5,6]
@test a == [6,5,4]
A = sparse([2,1,4,3])
V = view(A, :)
A[V] .= (1:4) .+ 2^30
@test A == [2,1,4,3] .+ 2^30
A = sparse([2,1,4,3])
R = reshape(view(A, :), 2, 2)
A[R] .= reshape((1:4) .+ 2^30, 2, 2)
@test A == [2,1,4,3] .+ 2^30
A = sparse([2,1,4,3])
R = reshape(A, 2, 2)
A[R] .= reshape((1:4) .+ 2^30, 2, 2)
@test A == [2,1,4,3] .+ 2^30
end
@testset "1-dimensional 'opt-out' (non) sparse broadcasting" begin
# SparseArrays intentionally only promotes to sparse for limited array types
# More support may be added in the future, but for now let's make sure that
# broadcast still performs as expected (issue #26977)
A = spzeros(5)
@test A .+ (1:5) == 1:5
@test A .* 2 .+ view(collect(1:10), 1:5) == 1:5
@test 2 .* A .+ view(1:10, 1:5) == 1:5
@test (A .+ (1:5)) .* 2 == 2:2:10
@test ((1:5) .+ A) .* 2 == 2:2:10
@test 2 .* ((1:5) .+ A) == 2:2:10
@test 2 .* (A .+ (1:5)) == 2:2:10
# lu(zeros(5,5)) throw SingularException, see #42343
@test_throws SingularException Diagonal(spzeros(5)) \ view(rand(10), 1:5)
end
@testset "Issue #27836" begin
@test minimum(sparse([1, 2], [1, 2], ones(Int32, 2)), dims = 1) isa Matrix
end
@testset "Issue #30118" begin
@test ((_, x) -> x).(Int, spzeros(3)) == spzeros(3)
@test ((_, _, x) -> x).(Int, Int, spzeros(3)) == spzeros(3)
@test ((_, _, _, x) -> x).(Int, Int, Int, spzeros(3)) == spzeros(3)
@test ((_, _, _, _, x) -> x).(Int, Int, Int, Int, spzeros(3)) == spzeros(3)
@test_broken typeof(((_, _, _, _, x) -> x).(Int, Int, Int, Int, spzeros(3))) == typeof(spzeros(3))
end
using SparseArrays.HigherOrderFns: SparseVecStyle, SparseMatStyle
@testset "Issue #30120: method ambiguity" begin
# HigherOrderFns._copy(f) was ambiguous. It may be impossible to
# invoke this from dot notation and it is an error anyway. But
# when someone invokes it by accident, we want it to produce a
# meaningful error.
err = try
copy(Broadcast.Broadcasted{SparseVecStyle}(rand, ()))
catch err
err
end
@test err isa MethodError
@test !occursin("is ambiguous", sprint(showerror, err))
@test err.f === SparseArrays.HigherOrderFns._copy
end
@testset "Sparse outer product, for type $T and vector $op" for
op in (transpose, adjoint),
T in (Float64, ComplexF64)
m, n, p = 100, 250, 0.1
A = sprand(T, m, n, p)
a, b = view(A, :, 1), sprand(T, m, p)
av, bv = Vector(a), Vector(b)
v = @inferred a .* op(b)
w = @inferred b .* op(a)
@test issparse(v)
@test issparse(w)
@test v == av .* op(bv)
@test w == bv .* op(av)
end
@testset "issue #31758: out of bounds write in _map_zeropres!" begin
y = sparsevec([2,7], [1., 2.], 10)
x1 = sparsevec(fill(1.0, 10))
x2 = sparsevec([2,7], [1., 2.], 10)
x3 = sparsevec(fill(1.0, 10))
f(x, y, z) = x == y == z == 0 ? 0.0 : NaN
y .= f.(x1, x2, x3)
@test all(isnan, y)
end
@testset "Vec/Mat Style" begin
@test SparseVecStyle(Val(0)) == SparseVecStyle()
@test SparseVecStyle(Val(1)) == SparseVecStyle()
@test SparseVecStyle(Val(2)) == SparseMatStyle()
@test SparseVecStyle(Val(3)) == Broadcast.DefaultArrayStyle{3}()
@test SparseMatStyle(Val(0)) == SparseMatStyle()
@test SparseMatStyle(Val(1)) == SparseMatStyle()
@test SparseMatStyle(Val(2)) == SparseMatStyle()
@test SparseMatStyle(Val(3)) == Broadcast.DefaultArrayStyle{3}()
end
@testset "extrema" begin
n = 10
A = sprand(n, n, 0.2)
B = Array(A)
C = Array{Real}(undef, 0, 0)
x = sprand(n, 0.2)
y = Array(x)
z = Array{Real}(undef, 0)
f(x) = x^3
@test extrema(A) == extrema(B)
@test extrema(x) == extrema(y)
@test extrema(f, A) == extrema(f, B)
@test extrema(f, x) == extrema(f, y)
@test extrema(spzeros(n, n)) == (0.0, 0.0)
@test extrema(spzeros(n)) == (0.0, 0.0)
@test_throws "reducing over an empty" extrema(spzeros(0, 0))
@test_throws "reducing over an empty" extrema(spzeros(0))
@test extrema(sparse(ones(n, n))) == (1.0, 1.0)
@test extrema(sparse(ones(n))) == (1.0, 1.0)
@test extrema(A; dims=:) == extrema(B; dims=:)
@test extrema(A; dims=1) == extrema(B; dims=1)
@test extrema(A; dims=2) == extrema(B; dims=2)
@test extrema(A; dims=(1,2)) == extrema(B; dims=(1,2))
@test extrema(f, A; dims=1) == extrema(f, B; dims=1)
@test_throws "reducing over an empty" extrema(sparse(C); dims=1) == extrema(C; dims=1)
@test extrema(A; dims=[]) == extrema(B; dims=[])
@test extrema(x; dims=:) == extrema(y; dims=:)
@test extrema(x; dims=1) == extrema(y; dims=1)
@test extrema(f, x; dims=1) == extrema(f, y; dims=1)
@test_throws "reducing over an empty" extrema(sparse(z); dims=1)
@test extrema(x; dims=[]) == extrema(y; dims=[])
end
function test_extrema(a; dims_test = ((), 1, 2, (1,2), 3))
for dims in dims_test
vext = extrema(a; dims)
vmin, vmax = minimum(a; dims), maximum(a; dims)
@test all(x -> isequal(x[1], x[2:3]), zip(vext,vmin,vmax))
end
end
@testset "NaN test for sparse extrema" begin
for sz = (3, 10, 100)
A = sprand(sz, sz, 0.3)
A[rand(1:sz^2,sz)] .= NaN
test_extrema(A)
A = sprand(sz*sz, 0.3)
A[rand(1:sz^2,sz)] .= NaN
test_extrema(A; dims_test = ((), 1, 2))
end
end
@testset "issue #42670 - error in sparsevec outer product" begin
A = spzeros(Int, 4)
B = copy(A)
C = sparsevec([0 0 1 1 0 0])'
A[2] = 1
A[2] = 0
@test A * C == B * C == spzeros(Int, 4, 6)
end
@testset "issue #46337 - error in sparsevec map" begin
x = sparsevec([1], [1//1+0im])
@test inv.(x) == [1//1+0im]
y = spzeros(Int, 1)
@test y ./ x == y
end
end # module