forked from JuliaSparse/SparseArrays.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlinalg.jl
949 lines (871 loc) · 36.8 KB
/
linalg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
module SparseLinalgTests
using Test
using SparseArrays
using SparseArrays: nonzeroinds, getcolptr
using LinearAlgebra
using Random
include("forbidproperties.jl")
sA = sprandn(3, 7, 0.5)
sC = similar(sA)
dA = Array(sA)
const BASE_TEST_PATH = joinpath(Sys.BINDIR, "..", "share", "julia", "test")
isdefined(Main, :Quaternions) || @eval Main include(joinpath($(BASE_TEST_PATH), "testhelpers", "Quaternions.jl"))
using .Main.Quaternions
@testset "circshift" begin
m,n = 17,15
A = sprand(m, n, 0.5)
for rshift in (-1, 0, 1, 10), cshift in (-1, 0, 1, 10)
shifts = (rshift, cshift)
# using dense circshift to compare
B = circshift(Matrix(A), shifts)
# sparse circshift
C = circshift(A, shifts)
@test C == B
# sparse circshift should not add structural zeros
@test nnz(C) == nnz(A)
# test circshift!
D = similar(A)
circshift!(D, A, shifts)
@test D == B
@test nnz(D) == nnz(A)
# test different in/out types
A2 = floor.(100A)
E1 = spzeros(Int64, m, n)
E2 = spzeros(Int64, m, n)
circshift!(E1, A2, shifts)
circshift!(E2, Matrix(A2), shifts)
@test E1 == E2
end
end
@testset "wrappers of sparse" begin
m = n = 10
A = spzeros(ComplexF64, m, n)
A[:,1] = 1:m
A[:,2] = [1 3 0 0 0 0 0 0 0 0]'
A[:,3] = [2 4 0 0 0 0 0 0 0 0]'
A[:,4] = [0 0 0 0 5 3 0 0 0 0]'
A[:,5] = [0 0 0 0 6 2 0 0 0 0]'
A[:,6] = [0 0 0 0 7 4 0 0 0 0]'
A[:,7:n] = rand(ComplexF64, m, n-6)
B = Matrix(A)
dowrap(wr, A) = wr(A)
dowrap(wr::Tuple, A) = (wr[1])(A, wr[2:end]...)
@testset "sparse($wr(A))" for wr in (
Symmetric, (Symmetric, :L), Hermitian, (Hermitian, :L),
Transpose, Adjoint,
UpperTriangular, LowerTriangular,
UnitUpperTriangular, UnitLowerTriangular,
(view, 3:6, 2:5))
@test SparseMatrixCSC(dowrap(wr, A)) == Matrix(dowrap(wr, B))
end
@testset "sparse($at($wr))" for at = (Transpose, Adjoint), wr =
(UpperTriangular, LowerTriangular,
UnitUpperTriangular, UnitLowerTriangular)
@test SparseMatrixCSC(at(wr(A))) == Matrix(at(wr(B)))
end
@test sparse([1,2,3,4,5]') == SparseMatrixCSC([1 2 3 4 5])
@test sparse(UpperTriangular(A')) == UpperTriangular(B')
@test sparse(Adjoint(UpperTriangular(A'))) == Adjoint(UpperTriangular(B'))
@test sparse(UnitUpperTriangular(spzeros(5,5))) == I
deepwrap(A) = (Adjoint(LowerTriangular(view(Symmetric(A), 5:7, 4:6))))
@test sparse(deepwrap(A)) == Matrix(deepwrap(B))
end
@testset "Sparse promotion in sparse matmul" begin
A = SparseMatrixCSC{Float32, Int8}(2, 2, Int8[1, 2, 3], Int8[1, 2], Float32[1., 2.])
MA = Array(A)
B = SparseMatrixCSC{ComplexF32, Int32}(2, 2, Int32[1, 2, 3], Int32[1, 2], ComplexF32[1. + im, 2. - im])
MB = Array(B)
@test A*transpose(B) ≈ MA * transpose(MB)
@test A*adjoint(B) ≈ MA * adjoint(MB)
@test transpose(A)*B ≈ transpose(MA) * MB
@test transpose(A)*transpose(B) ≈ transpose(MA) * transpose(MB)
@test adjoint(B)*A ≈ adjoint(MB) * MA
@test adjoint(B)*adjoint(complex.(A)) ≈ adjoint(MB) * adjoint(Array(complex.(A)))
end
@testset "multiplication of triangular sparse and dense matrices" begin
n = 7
B = rand(n, 3)
_triangular_sparse_matrix(n, ULT, T) = T == Int ? ULT(sparse(rand(0:10, n, n))) : ULT(sprandn(T, n, n, 0.4))
for T in (Int, Float16, Float32, Float64, ComplexF16, ComplexF32, ComplexF64)
for AT in (adjoint, transpose)
for TR in (UpperTriangular, UnitUpperTriangular, LowerTriangular, UnitLowerTriangular)
TS = AT(_triangular_sparse_matrix(n, TR, T))
@test isa(TS * B, DenseMatrix)
@test TS * B ≈ Matrix(TS)*B
end
end
end
end
@testset "sparse transpose adjoint" begin
A = sprand(10, 10, 0.75)
@test A' == SparseMatrixCSC(A')
@test SparseMatrixCSC(A') isa SparseMatrixCSC
@test transpose(A) == SparseMatrixCSC(transpose(A))
@test SparseMatrixCSC(transpose(A)) isa SparseMatrixCSC
@test SparseMatrixCSC{eltype(A)}(transpose(A)) == transpose(A)
@test SparseMatrixCSC{eltype(A), Int}(transpose(A)) == transpose(A)
@test SparseMatrixCSC{Float16}(transpose(A)) == transpose(SparseMatrixCSC{Float16}(A))
@test SparseMatrixCSC{Float16, Int}(transpose(A)) == transpose(SparseMatrixCSC{Float16}(A))
B = sprand(ComplexF64, 10, 10, 0.75)
@test SparseMatrixCSC{eltype(B)}(adjoint(B)) == adjoint(B)
@test SparseMatrixCSC{eltype(B), Int}(adjoint(B)) == adjoint(B)
@test SparseMatrixCSC{ComplexF16}(adjoint(B)) == adjoint(SparseMatrixCSC{ComplexF16}(B))
@test SparseMatrixCSC{ComplexF16, Int8}(adjoint(B)) == adjoint(SparseMatrixCSC{ComplexF16, Int8}(B))
end
# PR 28242
@testset "forward and backward solving of transpose/adjoint triangular matrices" begin
rng = MersenneTwister(20180730)
n = 10
A = sprandn(rng, n, n, 0.8); A += Diagonal((1:n) - diag(A))
B = ones(n, 2)
for (Ttri, triul ) in ((UpperTriangular, triu), (LowerTriangular, tril))
for trop in (adjoint, transpose)
AT = Ttri(A) # ...Triangular wrapped
AC = triul(A) # copied part of A
ATa = trop(AT) # wrapped Adjoint
ACa = sparse(trop(AC)) # copied and adjoint
@test AT \ B ≈ AC \ B
@test ATa \ B ≈ ACa \ B
@test ATa \ sparse(B) ≈ ATa \ B
@test Matrix(ATa) \ B ≈ ATa \ B
@test ATa * ( ATa \ B ) ≈ B
end
end
end
begin
rng = Random.MersenneTwister(0)
n = 1000
B = ones(n)
A = sprand(rng, n, n, 0.01)
MA = Matrix(A)
lA = sprand(rng, n, n+10, 0.01)
@test nnz(lA[:, n+1:n+10]) == nnz(view(lA, :, n+1:n+10))
@testset "triangular multiply with $tr($wr)" for tr in (identity, adjoint, transpose),
wr in (UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular)
AW = tr(wr(A))
MAW = tr(wr(MA))
@test AW * B ≈ MAW * B
# and for SparseMatrixCSCView - a view of all rows and unit range of cols
vAW = tr(wr(view([zero(A)+I A], :, (n+1):2n)))
@test vAW * B ≈ AW * B
end
a = sprand(rng, ComplexF64, n, n, 0.01)
ma = Matrix(a)
@testset "triangular multiply with conjugate matrices" for tr in (x -> adjoint(transpose(x)), x -> transpose(adjoint(x))),
wr in (UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular)
AW = tr(wr(a))
MAW = tr(wr(ma))
@test AW * B ≈ MAW * B
# and for SparseMatrixCSCView - a view of all rows and unit range of cols
vAW = tr(wr(view([zero(a)+I a], :, (n+1):2n)))
@test vAW * B ≈ AW * B
end
A = A - Diagonal(diag(A)) + 2I # avoid rounding errors by division
MA = Matrix(A)
@testset "triangular solver for $tr($wr)" for tr in (identity, adjoint, transpose),
wr in (UpperTriangular, LowerTriangular, UnitUpperTriangular, UnitLowerTriangular)
AW = tr(wr(A))
MAW = tr(wr(MA))
@test AW \ B ≈ MAW \ B
# and for SparseMatrixCSCView - a view of all rows and unit range of cols
vAW = tr(wr(view([zero(A)+I A], :, (n+1):2n)))
@test vAW \ B ≈ AW \ B
end
@testset "triangular singular exceptions" begin
A = LowerTriangular(sparse([0 2.0;0 1]))
@test_throws SingularException(1) A \ ones(2)
A = UpperTriangular(sparse([1.0 0;0 0]))
@test_throws SingularException(2) A \ ones(2)
end
end
@testset "Symmetric of sparse matrix mul! dense vector" begin
rng = Random.MersenneTwister(1)
n = 1000
p = 0.02
q = 1 - sqrt(1-p)
Areal = sprandn(rng, n, n, p)
Breal = randn(rng, n)
Acomplex = sprandn(rng, n, n, q) + sprandn(rng, n, n, q) * im
Bcomplex = Breal + randn(rng, n) * im
@testset "symmetric/Hermitian sparse multiply with $S($U)" for S in (Symmetric, Hermitian), U in (:U, :L), (A, B) in ((Areal,Breal), (Acomplex,Bcomplex))
Asym = S(A, U)
As = sparse(Asym) # takes most time
# @test which(mul!, (typeof(B), typeof(Asym), typeof(B))).module == SparseArrays
@test norm(Asym * B - As * B, Inf) <= eps() * n * p * 10
end
end
@testset "Symmetric of view of sparse matrix mul! dense vector" begin
rng = Random.MersenneTwister(1)
n = 1000
p = 0.02
q = 1 - sqrt(1-p)
Areal = view(sprandn(rng, n, n+10, p), :, 6:n+5)
Breal = randn(rng, n)
Acomplex = view(sprandn(rng, n, n+10, q) + sprandn(rng, n, n+10, q) * im, :, 6:n+5)
Bcomplex = Breal + randn(rng, n) * im
@testset "symmetric/Hermitian sparseview multiply with $S($U)" for S in (Symmetric, Hermitian), U in (:U, :L), (A, B) in ((Areal,Breal), (Acomplex,Bcomplex))
Asym = S(A, U)
As = sparse(Asym) # takes most time
# @test which(mul!, (typeof(B), typeof(Asym), typeof(B))).module == SparseArrays
@test norm(Asym * B - As * B, Inf) <= eps() * n * p * 10
end
end
@testset "in-place sparse-sparse mul!" begin
for n in (20, 30)
sA = sprandn(ComplexF64, n, n, 0.1); A = Array(sA)
sB = sprandn(ComplexF64, n, n, 0.1); B = Array(sB)
sC = sprandn(ComplexF64, n, n, 0.1); C = Array(sC)
a = randn(ComplexF64); b = randn(ComplexF64)
for (sA, A) in ((sA, A), (view(sA, :, 1:1:n), A[:,1:1:n]))
for trA in (identity, adjoint, transpose), trB in (identity, adjoint, transpose)
@test mul!(copy(sC), trA(sA), trB(sB)) ≈ trA(A) * trB(B)
for α in (true, false, a), β in (true, false, b)
@test mul!(copy(sC), trA(sA), trB(sB), α, β) ≈ C*β + trA(A) * trB(B) * α
end
end
end
end
end
@testset "UniformScaling" begin
local A = sprandn(10, 10, 0.5)
MA = Array(A)
@test A + I == MA + I
@test I + A == I + MA
@test A - I == MA - I
@test I - A == I - MA
end
@testset "unary minus for SparseMatrixCSC{Bool}" begin
A = sparse([1,3], [1,3], [true, true])
B = sparse([1,3], [1,3], [-1, -1])
@test -A == B
end
@testset "sparse matrix norms" begin
Ac = sprandn(10,10,.1) + im* sprandn(10,10,.1)
MAc = Array(Ac)
Ar = sprandn(10,10,.1)
MAr = Array(Ar)
Ai = ceil.(Int, Ar*100)
MAi = Array(Ai)
@test opnorm(Ac,1) ≈ opnorm(MAc,1)
@test opnorm(Ac,Inf) ≈ opnorm(MAc,Inf)
@test norm(Ac) ≈ norm(MAc)
@test opnorm(Ar,1) ≈ opnorm(MAr,1)
@test opnorm(Ar,Inf) ≈ opnorm(MAr,Inf)
@test norm(Ar) ≈ norm(MAr)
@test opnorm(Ai,1) ≈ opnorm(MAi,1)
@test opnorm(Ai,Inf) ≈ opnorm(MAi,Inf)
@test norm(Ai) ≈ norm(MAi)
Ai = trunc.(Int, Ar*100)
MAi = Array(Ai)
@test opnorm(Ai,1) ≈ opnorm(MAi,1)
@test opnorm(Ai,Inf) ≈ opnorm(MAi,Inf)
@test norm(Ai) ≈ norm(MAi)
Ai = round.(Int, Ar*100)
MAi = Array(Ai)
@test opnorm(Ai,1) ≈ opnorm(MAi,1)
@test opnorm(Ai,Inf) ≈ opnorm(MAi,Inf)
@test norm(Ai) ≈ norm(MAi)
# make certain entries in nzval beyond
# the range specified in colptr do not
# impact norm of a sparse matrix
foo = sparse(1.0I, 4, 4)
resize!(nonzeros(foo), 5)
setindex!(nonzeros(foo), NaN, 5)
@test norm(foo) == 2.0
# Test (m x 1) sparse matrix
colM = sprandn(10, 1, 0.6)
McolM = Array(colM)
@test opnorm(colM, 1) ≈ opnorm(McolM, 1)
@test opnorm(colM) ≈ opnorm(McolM)
@test opnorm(colM, Inf) ≈ opnorm(McolM, Inf)
@test_throws ArgumentError opnorm(colM, 3)
# Test (1 x n) sparse matrix
rowM = sprandn(1, 10, 0.6)
MrowM = Array(rowM)
@test opnorm(rowM, 1) ≈ opnorm(MrowM, 1)
@test opnorm(rowM) ≈ opnorm(MrowM)
@test opnorm(rowM, Inf) ≈ opnorm(MrowM, Inf)
@test_throws ArgumentError opnorm(rowM, 3)
end
@testset "fillstored!" begin
@test LinearAlgebra.fillstored!(sparse(2.0I, 5, 5), 1) == Matrix(I, 5, 5)
end
@testset "Diagonal linear solve" begin
n = 12
for relty in (Float32, Float64), elty in (relty, Complex{relty})
dd=convert(Vector{elty}, randn(n))
if elty <: Complex
dd+=im*convert(Vector{elty}, randn(n))
end
D = Diagonal(dd); MD = Array(D)
bd = rand(elty, n, n)
b = sparse(bd)
@test ldiv!(D, copy(b)) ≈ MD\bd
@test_throws SingularException ldiv!(Diagonal(zeros(elty, n)), copy(b))
b = rand(elty, n+1, n+1)
b = sparse(b)
@test_throws DimensionMismatch ldiv!(D, copy(b))
b = view(rand(elty, n+1), Vector(1:n+1))
@test_throws DimensionMismatch ldiv!(D, b)
for b in (sparse(rand(elty,n,n)), sparse(rand(elty,n)))
bd = Array(b)
@test lmul!(copy(D), copy(b)) ≈ MD*bd
@test lmul!(transpose(copy(D)), copy(b)) ≈ transpose(MD)*bd
@test lmul!(adjoint(copy(D)), copy(b)) ≈ MD'*bd
end
end
end
@testset "triu/tril" begin
n = 5
local A = sprand(n, n, 0.2)
AF = Array(A)
@test Array(triu(A,1)) == triu(AF,1)
@test Array(tril(A,1)) == tril(AF,1)
@test Array(triu!(copy(A), 2)) == triu(AF,2)
@test Array(tril!(copy(A), 2)) == tril(AF,2)
@test tril(A, -n - 2) == zero(A)
@test tril(A, n) == A
@test triu(A, -n) == A
@test triu(A, n + 2) == zero(A)
# fkeep trim option
@test isequal(length(rowvals(tril!(sparse([1,2,3], [1,2,3], [1,2,3], 3, 4), -1))), 0)
end
@testset "norm" begin
local A
A = sparse(Int[],Int[],Float64[],0,0)
@test norm(A) == zero(eltype(A))
A = sparse([1.0])
@test norm(A) == 1.0
@test_throws ArgumentError opnorm(sprand(5,5,0.2),3)
@test_throws ArgumentError opnorm(sprand(5,5,0.2),2)
end
@testset "ishermitian/issymmetric" begin
local A
# real matrices
A = sparse(1.0I, 5, 5)
@test ishermitian(A) == true
@test issymmetric(A) == true
A[1,3] = 1.0
@test ishermitian(A) == false
@test issymmetric(A) == false
A[3,1] = 1.0
@test ishermitian(A) == true
@test issymmetric(A) == true
# complex matrices
A = sparse((1.0 + 1.0im)I, 5, 5)
@test ishermitian(A) == false
@test issymmetric(A) == true
A[1,4] = 1.0 + im
@test ishermitian(A) == false
@test issymmetric(A) == false
A = sparse(ComplexF64(1)I, 5, 5)
A[3,2] = 1.0 + im
@test ishermitian(A) == false
@test issymmetric(A) == false
A[2,3] = 1.0 - im
@test ishermitian(A) == true
@test issymmetric(A) == false
A = sparse(zeros(5,5))
@test ishermitian(A) == true
@test issymmetric(A) == true
# explicit zeros
A = sparse(ComplexF64(1)I, 5, 5)
A[3,1] = 2
nonzeros(A)[2] = 0.0
@test ishermitian(A) == true
@test issymmetric(A) == true
# 15504
m = n = 5
colptr = [1, 5, 9, 13, 13, 17]
rowval = [1, 2, 3, 5, 1, 2, 3, 5, 1, 2, 3, 5, 1, 2, 3, 5]
nzval = [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0]
A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
@test issymmetric(A) == true
nonzeros(A)[end - 3] = 2.0
@test issymmetric(A) == false
# 16521
@test issymmetric(sparse([0 0; 1 0])) == false
@test issymmetric(sparse([0 1; 0 0])) == false
@test issymmetric(sparse([0 0; 1 1])) == false
@test issymmetric(sparse([1 0; 1 0])) == false
@test issymmetric(sparse([0 1; 1 0])) == true
@test issymmetric(sparse([1 1; 1 0])) == true
end
@testset "rotations" begin
a = sparse( [1,1,2,3], [1,3,4,1], [1,2,3,4] )
@test rot180(a,2) == a
@test rot180(a,1) == sparse( [3,3,2,1], [4,2,1,4], [1,2,3,4] )
@test rotr90(a,1) == sparse( [1,3,4,1], [3,3,2,1], [1,2,3,4] )
@test rotl90(a,1) == sparse( [4,2,1,4], [1,1,2,3], [1,2,3,4] )
@test rotl90(a,2) == rot180(a)
@test rotr90(a,2) == rot180(a)
@test rotl90(a,3) == rotr90(a)
@test rotr90(a,3) == rotl90(a)
#ensure we have preserved the correct dimensions!
a = sparse(1.0I, 3, 5)
@test size(rot180(a)) == (3,5)
@test size(rotr90(a)) == (5,3)
@test size(rotl90(a)) == (5,3)
end
@testset "istriu/istril" begin
local A = fill(1, 5, 5)
@test istriu(sparse(triu(A)))
@test !istriu(sparse(A))
@test istril(sparse(tril(A)))
@test !istril(sparse(A))
end
@testset "trace" begin
@test_throws DimensionMismatch tr(spzeros(5,6))
@test tr(sparse(1.0I, 5, 5)) == 5
end
@testset "spdiagm" begin
x = fill(1, 2)
@test spdiagm(0 => x, -1 => x) == [1 0 0; 1 1 0; 0 1 0]
@test spdiagm(0 => x, 1 => x) == [1 1 0; 0 1 1; 0 0 0]
for (x, y) in ((rand(5), rand(4)),(sparse(rand(5)), sparse(rand(4))))
@test spdiagm(-1 => x)::SparseMatrixCSC == diagm(-1 => x)
@test spdiagm( 0 => x)::SparseMatrixCSC == diagm( 0 => x) == sparse(Diagonal(x))
@test spdiagm(-1 => x)::SparseMatrixCSC == diagm(-1 => x)
@test spdiagm(0 => x, -1 => y)::SparseMatrixCSC == diagm(0 => x, -1 => y)
@test spdiagm(0 => x, 1 => y)::SparseMatrixCSC == diagm(0 => x, 1 => y)
end
# promotion
@test spdiagm(0 => [1,2], 1 => [3.5], -1 => [4+5im]) == [1 3.5; 4+5im 2]
# convenience constructor
@test spdiagm(x)::SparseMatrixCSC == diagm(x)
@test nnz(spdiagm(x)) == count(!iszero, x)
@test nnz(spdiagm(sparse([x; 0]))) == 2
@test spdiagm(3, 4, x)::SparseMatrixCSC == diagm(3, 4, x)
@test nnz(spdiagm(3, 4, sparse([x; 0]))) == 2
# non-square:
for m=1:4, n=2:4
if m < 2 || n < 3
@test_throws DimensionMismatch spdiagm(m,n, 0 => x, 1 => x)
else
M = zeros(m,n)
M[1:2,1:3] = [1 1 0; 0 1 1]
@test spdiagm(m,n, 0 => x, 1 => x) == M
end
end
# sparsity-preservation
x = sprand(10, 0.2); y = ones(9)
@test spdiagm(0 => x, 1 => y) == diagm(0 => x, 1 => y)
@test nnz(spdiagm(0 => x, 1 => y)) == length(y) + nnz(x)
end
@testset "diag" begin
for T in (Float64, ComplexF64)
S1 = sprand(T, 5, 5, 0.5)
S2 = sprand(T, 10, 5, 0.5)
S3 = sprand(T, 5, 10, 0.5)
for S in (S1, S2, S3)
local A = Matrix(S)
@test diag(S)::SparseVector{T,Int} == diag(A)
for k in -size(S,1):size(S,2)
@test diag(S, k)::SparseVector{T,Int} == diag(A, k)
end
@test_throws ArgumentError diag(S, -size(S,1)-1)
@test_throws ArgumentError diag(S, size(S,2)+1)
end
end
# test that stored zeros are still stored zeros in the diagonal
S = sparse([1,3],[1,3],[0.0,0.0]); V = diag(S)
@test nonzeroinds(V) == [1,3]
@test nonzeros(V) == [0.0,0.0]
end
@testset "scaling with * and mul!, rmul!, and lmul!" begin
b = randn(7)
@test dA * Diagonal(b) == sA * Diagonal(b)
@test dA * Diagonal(b) == mul!(sC, sA, Diagonal(b))
@test dA * Diagonal(b) == rmul!(copy(sA), Diagonal(b))
b = randn(3)
@test Diagonal(b) * dA == Diagonal(b) * sA
@test Diagonal(b) * dA == mul!(sC, Diagonal(b), sA)
@test Diagonal(b) * dA == lmul!(Diagonal(b), copy(sA))
@test dA * 0.5 == sA * 0.5
@test dA * 0.5 == mul!(sC, sA, 0.5)
@test dA * 0.5 == rmul!(copy(sA), 0.5)
@test 0.5 * dA == 0.5 * sA
@test 0.5 * dA == mul!(sC, sA, 0.5)
@test 0.5 * dA == lmul!(0.5, copy(sA))
@test mul!(sC, 0.5, sA) == mul!(sC, sA, 0.5)
@testset "inverse scaling with mul!" begin
bi = inv.(b)
@test lmul!(Diagonal(bi), copy(dA)) ≈ ldiv!(Diagonal(b), copy(sA))
@test lmul!(Diagonal(bi), copy(dA)) ≈ ldiv!(transpose(Diagonal(b)), copy(sA))
@test lmul!(Diagonal(conj(bi)), copy(dA)) ≈ ldiv!(adjoint(Diagonal(b)), copy(sA))
Aob = Diagonal(b) \ sA
@test Aob == ldiv!(Diagonal(b), copy(sA))
@test issparse(Aob)
@test_throws DimensionMismatch ldiv!(Diagonal(fill(1., length(b)+1)), copy(sA))
@test_throws LinearAlgebra.SingularException ldiv!(Diagonal(zeros(length(b))), copy(sA))
dAt = copy(transpose(dA))
sAt = copy(transpose(sA))
@test rmul!(copy(dAt), Diagonal(bi)) ≈ rdiv!(copy(sAt), Diagonal(b))
@test rmul!(copy(dAt), Diagonal(bi)) ≈ rdiv!(copy(sAt), transpose(Diagonal(b)))
@test rmul!(copy(dAt), Diagonal(conj(bi))) ≈ rdiv!(copy(sAt), adjoint(Diagonal(b)))
Atob = sAt / Diagonal(b)
@test Atob == rdiv!(copy(dAt), Diagonal(b))
@test issparse(Atob)
@test_throws DimensionMismatch rdiv!(copy(sAt), Diagonal(fill(1., length(b)+1)))
@test_throws LinearAlgebra.SingularException rdiv!(copy(sAt), Diagonal(zeros(length(b))))
end
@testset "non-commutative multiplication" begin
# non-commutative multiplication
Avals = Quaternion.(randn(10), randn(10), randn(10), randn(10))
sA = sparse(rand(1:3, 10), rand(1:7, 10), Avals, 3, 7)
sC = copy(sA)
dA = Array(sA)
b = Quaternion.(randn(7), randn(7), randn(7), randn(7))
D = Diagonal(b)
@test Array(sA * D) ≈ dA * D
@test rmul!(copy(sA), D) ≈ dA * D
@test mul!(sC, copy(sA), D) ≈ dA * D
b = Quaternion.(randn(3), randn(3), randn(3), randn(3))
D = Diagonal(b)
@test Array(D * sA) ≈ D * dA
@test lmul!(D, copy(sA)) ≈ D * dA
@test mul!(sC, D, copy(sA)) ≈ D * dA
end
end
@testset "conj" begin
cA = sprandn(5,5,0.2) + im*sprandn(5,5,0.2)
@test Array(conj.(cA)) == conj(Array(cA))
@test Array(conj!(copy(cA))) == conj(Array(cA))
end
@testset "SparseMatrixCSC [c]transpose[!] and permute[!]" begin
smalldim = 5
largedim = 10
nzprob = 0.4
(m, n) = (smalldim, smalldim)
A = sprand(m, n, nzprob)
X = similar(A)
C = copy(transpose(A))
p = randperm(m)
q = randperm(n)
@testset "common error checking of [c]transpose! methods (ftranspose!)" begin
@test_throws DimensionMismatch transpose!(A[:, 1:(smalldim - 1)], A)
@test_throws DimensionMismatch transpose!(A[1:(smalldim - 1), 1], A)
end
@testset "common error checking of permute[!] methods / source-perm compat" begin
@test_throws DimensionMismatch permute(A, p[1:(end - 1)], q)
@test_throws DimensionMismatch permute(A, p, q[1:(end - 1)])
end
@testset "common error checking of permute[!] methods / source-dest compat" begin
@test_throws DimensionMismatch permute!(A[1:(m - 1), :], A, p, q)
@test_throws DimensionMismatch permute!(A[:, 1:(m - 1)], A, p, q)
@test_throws ArgumentError permute!((Y = copy(X); resize!(rowvals(Y), nnz(A) - 1); Y), A, p, q)
@test_throws ArgumentError permute!((Y = copy(X); resize!(nonzeros(Y), nnz(A) - 1); Y), A, p, q)
end
@testset "common error checking of permute[!] methods / source-workmat compat" begin
@test_throws DimensionMismatch permute!(X, A, p, q, C[1:(m - 1), :])
@test_throws DimensionMismatch permute!(X, A, p, q, C[:, 1:(m - 1)])
@test_throws ArgumentError permute!(X, A, p, q, (D = copy(C); resize!(rowvals(D), nnz(A) - 1); D))
@test_throws ArgumentError permute!(X, A, p, q, (D = copy(C); resize!(nonzeros(D), nnz(A) - 1); D))
end
@testset "common error checking of permute[!] methods / source-workcolptr compat" begin
@test_throws DimensionMismatch permute!(A, p, q, C, Vector{eltype(rowvals(A))}(undef, length(getcolptr(A)) - 1))
end
@testset "common error checking of permute[!] methods / permutation validity" begin
@test_throws ArgumentError permute!(A, (r = copy(p); r[2] = r[1]; r), q)
@test_throws ArgumentError permute!(A, (r = copy(p); r[2] = m + 1; r), q)
@test_throws ArgumentError permute!(A, p, (r = copy(q); r[2] = r[1]; r))
@test_throws ArgumentError permute!(A, p, (r = copy(q); r[2] = n + 1; r))
end
@testset "overall functionality of [c]transpose[!] and permute[!]" begin
for (m, n) in ((smalldim, smalldim), (smalldim, largedim), (largedim, smalldim))
A = sprand(m, n, nzprob)
At = copy(transpose(A))
# transpose[!]
fullAt = Array(transpose(A))
@test copy(transpose(A)) == fullAt
@test transpose!(similar(At), A) == fullAt
# adjoint[!]
C = A + im*A/2
fullCh = Array(C')
@test copy(C') == fullCh
@test adjoint!(similar(sparse(fullCh)), C) == fullCh
# permute[!]
p = randperm(m)
q = randperm(n)
fullPAQ = Array(A)[p,q]
@test permute(A, p, q) == sparse(Array(A[p,q]))
@test permute!(similar(A), A, p, q) == fullPAQ
@test permute!(similar(A), A, p, q, similar(At)) == fullPAQ
@test permute!(copy(A), p, q) == fullPAQ
@test permute!(copy(A), p, q, similar(At)) == fullPAQ
@test permute!(copy(A), p, q, similar(At), similar(getcolptr(A))) == fullPAQ
end
end
end
@testset "transpose of SubArrays" begin
A = view(sprandn(10, 10, 0.3), 1:4, 1:4)
@test copy(transpose(Array(A))) == Array(transpose(A))
@test copy(adjoint(Array(A))) == Array(adjoint(A))
end
@testset "exp" begin
A = sprandn(5,5,0.2)
@test ℯ.^A ≈ ℯ.^Array(A)
end
@testset "matrix-vector multiplication (non-square)" begin
for i = 1:5
a = sprand(10, 5, 0.5)
b = rand(5)
@test maximum(abs.(a*b - Array(a)*b)) < 100*eps()
end
end
@testset "sparse matrix * BitArray" begin
A = sprand(5,5,0.3)
MA = Array(A)
B = trues(5)
@test A*B ≈ MA*B
B = trues(5,5)
for trA in (identity, adjoint, transpose), trB in (identity, adjoint, transpose)
@test trA(A) * trB(B) ≈ trA(MA) * trB(B)
@test trB(B) * trA(A) ≈ trB(B) * trA(MA)
end
end
@testset "matrix multiplication" begin
for (m, p, n, q, k) in (
(10, 0.7, 5, 0.3, 15),
(100, 0.01, 100, 0.01, 20),
(100, 0.1, 100, 0.2, 100),
)
a = sprand(m, n, p); ad = Array(a)
b = sprand(n, k, q); bd = Array(b)
as = sparse(a')
bs = sparse(b')
ab = a * b
aab = ad * bd
@test maximum(abs.(ab - aab)) < 100*eps()
@test a*bs' == ab
@test as'*b == ab
@test as'*bs' == ab
f = Diagonal(rand(n))
@test Array(a*f) == ad*f
@test Array(f*b) == f*bd
A = rand(2n, 2n)
sA = view(A, 1:2:2n, 1:2:2n); dA = Array(sA)
@test (sA*b)::Matrix ≈ dA*bd
@test (a*sA)::Matrix ≈ ad*dA
@test (sA'b)::Matrix ≈ dA'*bd
c = sprandn(ComplexF32, n, n, q); cd = Array(c)
@test (sA*c')::Matrix ≈ dA*cd'
@test (c'*sA)::Matrix ≈ cd'*dA
@test (sA'c)::Matrix ≈ dA'*cd
@test (sA'c')::Matrix ≈ dA'*cd'
end
end
@testset "multiplication of sparse matrix and triangular matrix" begin
_sparse_test_matrix(n, T) = T == Int ? sparse(rand(0:4, n, n)) : sprandn(T, n, n, 0.6)
_triangular_test_matrix(n, TA, T) = T == Int ? TA(rand(0:9, n, n)) : TA(randn(T, n, n))
n = 5
for T1 in (Int, Float64, ComplexF32)
S = _sparse_test_matrix(n, T1)
MS = Matrix(S)
for T2 in (Int, Float64, ComplexF32)
for TM in (LowerTriangular, UnitLowerTriangular, UpperTriangular, UnitLowerTriangular)
T = _triangular_test_matrix(n, TM, T2)
MT = Matrix(T)
@test isa(T * S, DenseMatrix)
@test isa(S * T, DenseMatrix)
for transT in (identity, adjoint, transpose), transS in (identity, adjoint, transpose)
@test transT(T) * transS(S) ≈ transT(MT) * transS(MS)
@test transS(S) * transT(T) ≈ transS(MS) * transT(MT)
end
end
end
end
end
@testset "Adding sparse-backed SymTridiagonal (#46355)" begin
a = SymTridiagonal(sparsevec(Int[1]), sparsevec(Int[]))
@test a + a == Matrix(a) + Matrix(a)
# symtridiagonal with non-empty off-diagonal
b = SymTridiagonal(sparsevec(Int[1, 2, 3]), sparsevec(Int[1, 2]))
@test b + b == Matrix(b) + Matrix(b)
# a symtridiagonal with an additional off-diagonal element
c = SymTridiagonal(sparsevec(Int[1, 2, 3]), sparsevec(Int[1, 2, 3]))
@test c + c == Matrix(c) + Matrix(c)
end
@testset "kronecker product" begin
for (m,n) in ((5,10), (13,8))
a = sprand(m, 5, 0.4); a_d = Matrix(a)
b = sprand(n, 6, 0.3); b_d = Matrix(b)
v = view(a, :, 1); v_d = Vector(v)
x = sprand(m, 0.4); x_d = Vector(x)
y = sprand(n, 0.3); y_d = Vector(y)
c_dis = Any[Bidiagonal(rand(m), rand(m-1), :U),
Bidiagonal(rand(m), rand(m-1), :L),
Diagonal(rand(m)),
SymTridiagonal(rand(m), rand(m-1)),
Tridiagonal(rand(m-1), rand(m), rand(m-1))]
d_dis = Any[Bidiagonal(rand(n), rand(n-1), :U),
Bidiagonal(rand(n), rand(n-1), :L),
Diagonal(rand(n)),
SymTridiagonal(rand(n), rand(n-1)),
Tridiagonal(rand(n-1), rand(n), rand(n-1))]
for (c_di, d_di) in Iterators.product(c_dis, d_dis)
c = sparse(c_di); c_d = Array(c_di)
d = sparse(d_di); d_d = Array(d_di)
# mat ⊗ mat
for t in (identity, adjoint, transpose)
@test kron(t(a), b)::SparseMatrixCSC == kron(t(a_d), b_d)
@test kron(a, t(b))::SparseMatrixCSC == kron(a_d, t(b_d))
@test kron(t(a), t(b))::SparseMatrixCSC == kron(t(a_d), t(b_d))
@test kron(t(a), b_d)::SparseMatrixCSC == kron(t(a_d), b_d)
@test kron(a_d, t(b))::SparseMatrixCSC == kron(a_d, t(b_d))
@test kron(t(a), c_di)::SparseMatrixCSC == kron(t(a_d), c_d)
@test kron(a, t(c_di))::SparseMatrixCSC == kron(a_d, t(c_d))
@test kron(t(a), t(c_di))::SparseMatrixCSC == kron(t(a_d), t(c_d))
@test kron(c_di, y)::SparseMatrixCSC == kron(c_di, y_d)
@test kron(x, d_di)::SparseMatrixCSC == kron(x_d, d_di)
end
end
# vec ⊗ vec
@test Vector(kron(x, y)::SparseVector) == kron(x_d, y_d)
@test Vector(kron(x_d, y)::SparseVector) == kron(x_d, y_d)
@test Vector(kron(x, y_d)::SparseVector) == kron(x_d, y_d)
for t in (identity, adjoint, transpose)
# mat ⊗ vec
@test kron(t(a), y)::SparseMatrixCSC == kron(t(a_d), y_d)
@test kron(t(a_d), y)::SparseMatrixCSC == kron(t(a_d), y_d)
@test kron(t(a), y_d)::SparseMatrixCSC == kron(t(a_d), y_d)
# vec ⊗ mat
@test kron(x, t(b))::SparseMatrixCSC == kron(x_d, t(b_d))
@test kron(x_d, t(b))::SparseMatrixCSC == kron(x_d, t(b_d))
@test kron(x, t(b_d))::SparseMatrixCSC == kron(x_d, t(b_d))
end
# vec ⊗ vec'
@test kron(v, y')::SparseMatrixCSC == kron(v_d, y_d')
@test kron(x, y')::SparseMatrixCSC == kron(x_d, y_d')
# test different types
z = convert(SparseVector{Float16, Int8}, y); z_d = Vector(z)
@test Vector(kron(x, z)) == kron(x_d, z_d)
@test kron(a, z) == kron(a_d, z_d)
@test kron(z, b) == kron(z_d, b_d)
# test bounds checks
@test_throws DimensionMismatch kron!(copy(a), a, b)
@test_throws DimensionMismatch kron!(copy(x), x, y)
@test_throws DimensionMismatch kron!(spzeros(2,2), x, y')
end
end
@testset "sparse Frobenius dot/inner product" begin
full_view = M -> view(M, :, :)
for i = 1:5
A = sprand(ComplexF64,10,15,0.4); MA = Matrix(A)
B = sprand(ComplexF64,10,15,0.5); MB = Matrix(B)
C = rand(10,15) .> 0.3; MC = Matrix(C)
@test dot(A,B) ≈ dot(MA, MB)
@test dot(A,B) ≈ dot(A, MB)
@test dot(A,B) ≈ dot(MA, B)
@test dot(A,C) ≈ dot(MA, C)
@test dot(C,A) ≈ dot(C, MA)
# square matrices required by most linear algebra wrappers
SA = A * A'; MSA = Matrix(SA)
SB = B * B'; MSB = Matrix(SB)
SC = C * C'; MSC = Matrix(SC)
for W in (full_view, LowerTriangular, UpperTriangular, UpperHessenberg, Symmetric, Hermitian)
WA = W(MSA)
WB = W(MSB)
WC = W(MSC)
@test dot(WA,SB) ≈ dot(WA, MSB)
@test dot(SA,WB) ≈ dot(MSA, WB)
@test dot(SA,WC) ≈ dot(MSA, WC)
end
for W in (transpose, adjoint)
WA = W(MA)
WB = W(MB)
WC = W(MC)
TA = copy(W(A))
TB = copy(W(B))
@test dot(WA,TB) ≈ dot(WA, Matrix(TB))
@test dot(TA,WB) ≈ dot(Matrix(TA), WB)
@test dot(TA,WC) ≈ dot(Matrix(TA), WC)
end
for M in (A, B, C)
D = Diagonal(M * M')
a = spzeros(Complex{Float64}, size(D, 1))
a[1:3] = rand(Complex{Float64}, 3)
b = spzeros(Complex{Float64}, size(D, 1))
b[1:3] = rand(Complex{Float64}, 3)
@test dot(a, D, b) ≈ dot(a, sparse(D), b)
@test dot(b, D, a) ≈ dot(b, sparse(D), a)
@test dot(b, D, a) ≈ dot(b, D, collect(a))
@test dot(b, D, a) ≈ dot(collect(b), D, a)
@test_throws DimensionMismatch dot(b, D, [a; 1])
@test_throws DimensionMismatch dot([b; 1], D, a)
@test_throws DimensionMismatch dot([b; 1], D, [a; 1])
end
end
@test_throws DimensionMismatch dot(sprand(5,5,0.2),sprand(5,6,0.2))
@test_throws DimensionMismatch dot(rand(5,5),sprand(5,6,0.2))
@test_throws DimensionMismatch dot(sprand(5,5,0.2),rand(5,6))
end
@testset "generalized dot product" begin
for i = 1:5
A = sprand(ComplexF64, 10, 15, 0.4)
Av = view(A, :, :)
x = sprand(ComplexF64, 10, 0.5)
y = sprand(ComplexF64, 15, 0.5)
@test dot(x, A, y) ≈ dot(Vector(x), A, Vector(y)) ≈ (Vector(x)' * Matrix(A)) * Vector(y)
@test dot(x, A, y) ≈ dot(x, Av, y)
end
for (T, trans) in ((Float64, Symmetric), (ComplexF64, Hermitian)), uplo in (:U, :L)
B = sprandn(T, 10, 10, 0.2)
x = sprandn(T, 10, 0.4)
S = trans(B'B, uplo)
@test dot(x, S, x) ≈ dot(Vector(x), S, Vector(x)) ≈ dot(Vector(x), Matrix(S), Vector(x))
end
end
@testset "conversion to special LinearAlgebra types" begin
# issue 40924
@test convert(Diagonal, sparse(Diagonal(1:2))) isa Diagonal
@test convert(Diagonal, sparse(Diagonal(1:2))) == Diagonal(1:2)
@test convert(Tridiagonal, sparse(Tridiagonal(1:3, 4:7, 8:10))) isa Tridiagonal
@test convert(Tridiagonal, sparse(Tridiagonal(1:3, 4:7, 8:10))) == Tridiagonal(1:3, 4:7, 8:10)
@test convert(SymTridiagonal, sparse(SymTridiagonal(1:4, 5:7))) isa SymTridiagonal
@test convert(SymTridiagonal, sparse(SymTridiagonal(1:4, 5:7))) == SymTridiagonal(1:4, 5:7)
lt = LowerTriangular([1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0])
@test convert(LowerTriangular, sparse(lt)) isa LowerTriangular
@test convert(LowerTriangular, sparse(lt)) == lt
ut = UpperTriangular([1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0])
@test convert(UpperTriangular, sparse(ut)) isa UpperTriangular
@test convert(UpperTriangular, sparse(ut)) == ut
end
@testset "SparseMatrixCSC construction from UniformScaling" begin
@test_throws ArgumentError SparseMatrixCSC(I, -1, 3)
@test_throws ArgumentError SparseMatrixCSC(I, 3, -1)
@test SparseMatrixCSC(2I, 3, 3)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 3)
@test SparseMatrixCSC(2I, 3, 4)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
@test SparseMatrixCSC(2I, 4, 3)::SparseMatrixCSC{Int,Int} == Matrix(2I, 4, 3)
@test SparseMatrixCSC(2.0I, 3, 3)::SparseMatrixCSC{Float64,Int} == Matrix(2I, 3, 3)
@test SparseMatrixCSC{Real}(2I, 3, 3)::SparseMatrixCSC{Real,Int} == Matrix(2I, 3, 3)
@test SparseMatrixCSC{Float64}(2I, 3, 3)::SparseMatrixCSC{Float64,Int} == Matrix(2I, 3, 3)
@test SparseMatrixCSC{Float64,Int32}(2I, 3, 3)::SparseMatrixCSC{Float64,Int32} == Matrix(2I, 3, 3)
@test SparseMatrixCSC{Float64,Int32}(0I, 3, 3)::SparseMatrixCSC{Float64,Int32} == Matrix(0I, 3, 3)
end
@testset "sparse(S::UniformScaling, shape...) convenience constructors" begin
# we exercise these methods only lightly as these methods call the SparseMatrixCSC
# constructor methods well-exercised by the immediately preceding testset
@test sparse(2I, 3, 4)::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
@test sparse(2I, (3, 4))::SparseMatrixCSC{Int,Int} == Matrix(2I, 3, 4)
@test sparse(3I, 4, 5) == sparse(1:4, 1:4, 3, 4, 5)
@test sparse(3I, 5, 4) == sparse(1:4, 1:4, 3, 5, 4)
end
@testset "diagonal-sandwiched triple multiplication" begin
S = sprand(4, 6, 0.2)
D1 = Diagonal(axes(S,1))
D2 = Diagonal(axes(S,2) .+ 4)
A = Array(S)
C = D1 * S * D2
@test C isa SparseMatrixCSC
@test C ≈ D1 * A * D2
C = D2 * S' * D1
@test C isa SparseMatrixCSC
@test C ≈ D2 * A' * D1
C = D1 * view(S, :, :) * D2
@test C isa SparseMatrixCSC
@test C ≈ D1 * A * D2
@test_throws DimensionMismatch D2 * S * D2
@test_throws DimensionMismatch D1 * S * D1
end
end