diff --git a/.run/dqo run.run.xml b/.run/dqo run.run.xml
index c37db9ec98..899de23cb8 100644
--- a/.run/dqo run.run.xml
+++ b/.run/dqo run.run.xml
@@ -5,7 +5,7 @@
-
+
diff --git a/CHANGELOG.md b/CHANGELOG.md
index a0d3319767..19ae7a1b1e 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,4 +1,5 @@
# 1.6.1
-* Small fixes in the data quality check editor - styling fixes
-* Parallel invocation of notification events
-* The calculation logic for counting incidents on the global incident screen modified to use dates correctly
+* Incident notification supports emails
+* Small bug fixes in the check editor
+* Additional check to detect empty columns
+* Copying data quality check patterns
diff --git a/VERSION b/VERSION
index ce6a70b9d8..2eda823ff5 100644
--- a/VERSION
+++ b/VERSION
@@ -1 +1 @@
-1.6.0
\ No newline at end of file
+1.6.1
\ No newline at end of file
diff --git a/distribution/pom.xml b/distribution/pom.xml
index 3649b3258a..28cdaceaee 100644
--- a/distribution/pom.xml
+++ b/distribution/pom.xml
@@ -11,7 +11,7 @@
com.dqopsdqo-distribution
- 1.6.0
+ 1.6.1dqo-distributionDQOps Data Quality Operations Center final assemblypom
diff --git a/distribution/python/dqops/version.py b/distribution/python/dqops/version.py
index 0628f32c6a..9de2b30f77 100644
--- a/distribution/python/dqops/version.py
+++ b/distribution/python/dqops/version.py
@@ -15,8 +15,8 @@
# limit
# WARNING: the next two lines with the version numbers (VERSION =, PIP_VERSION =) should not be modified manually. They are changed by a maven profile at compile time.
-VERSION = "1.6.0"
-PIP_VERSION = "1.6.0"
+VERSION = "1.6.1"
+PIP_VERSION = "1.6.1"
GITHUB_RELEASE = "v" + VERSION + ""
JAVA_VERSION = "17"
diff --git a/docs/categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md b/docs/categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md
index e8e3ff9797..89d642e7de 100644
--- a/docs/categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md
+++ b/docs/categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md
@@ -319,8 +319,8 @@ The status identifies the highest severity issue by color.
|[*nulls_count*](../checks/column/nulls/nulls-count.md)|Maximum count of rows containing null values (incomplete column)|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects incomplete columns that contain any *null* values. Counts the number of rows having a null value. Raises a data quality issue when the count of null values is above a *max_count* threshold.|:material-check-bold:|
|[*nulls_percent*](../checks/column/nulls/nulls-percent.md)|Maximum percentage of rows containing null values (incomplete column)|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects incomplete columns that contain any *null* values. Measures the percentage of rows having a null value. Raises a data quality issue when the percentage of null values is above a *max_percent* threshold. Configure this check to accept a given percentage of null values by setting the *max_percent* parameter.|:material-check-bold:|
|[*nulls_percent_anomaly*](../checks/column/nulls/nulls-percent-anomaly.md)|Abnormal change in percentage of null values. Measured as a percentile of anomalous measures.|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects day-to-day anomalies in the percentage of *null* values. Measures the percentage of rows having a *null* value. Raises a data quality issue when the rate of null values increases or decreases too much.|:material-check-bold:|
-|[*not_nulls_count*](../checks/column/nulls/not-nulls-count.md)|Minimum count of rows containing non-null values (find empty column)|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column.|:material-check-bold:|
-|[*not_nulls_percent*](../checks/column/nulls/not-nulls-percent.md)|Minimum percentage of rows containing non-null values (find empty column)|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below *min_percentage*. The default value of the *min_percentage* parameter is 100.0, but DQOps supports setting a lower value to accept some nulls.|:material-check-bold:|
+|[*not_nulls_count*](../checks/column/nulls/not-nulls-count.md)|Minimum count of rows containing non-null values|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column.|:material-check-bold:|
+|[*not_nulls_percent*](../checks/column/nulls/not-nulls-percent.md)|Minimum percentage of rows containing non-null values|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below *min_percentage*. The default value of the *min_percentage* parameter is 100.0, but DQOps supports setting a lower value to accept some nulls.|:material-check-bold:|
|[*empty_column_found*](../checks/column/nulls/empty-column-found.md)|Find an empty column|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects empty columns that contain only *null* values. Counts the number of rows that have non-null values. Raises a data quality issue when the count of non-null values is below *min_count*. The default value of the *min_count* parameter is 1, but DQOps supports setting a higher number to assert that a column has at least that many non-null values.|:material-check-bold:|
|[*nulls_percent_change*](../checks/column/nulls/nulls-percent-change.md)|Maximum percentage of change in the count of null values|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects relative increases or decreases in the percentage of null values since the last measured percentage. Measures the percentage of null values for each day. Raises a data quality issue when the change in the percentage of null values is above *max_percent* of the previous percentage.| |
|[*nulls_percent_change_1_day*](../checks/column/nulls/nulls-percent-change-1-day.md)|Maximum percentage of change in the count of null values vs 1 day ago|[Completeness](../dqo-concepts/data-quality-dimensions.md#data-completeness)|Detects relative increases or decreases in the percentage of null values since the previous day. Measures the percentage of null values for each day. Raises a data quality issue when the change in the percentage of null values is above *max_percent* of the previous percentage.| |
diff --git a/docs/checks/column/nulls/index.md b/docs/checks/column/nulls/index.md
index 86ae478cf9..7a045f58e6 100644
--- a/docs/checks/column/nulls/index.md
+++ b/docs/checks/column/nulls/index.md
@@ -62,11 +62,11 @@ Verifies that a column contains a minimum number of non-null values.
| Data quality check name | Friendly name | Check type | Description | Standard |
|-------------------------|---------------|------------|-------------|----------|
-|[`profile_not_nulls_count`](./not-nulls-count.md#profile-not-nulls-count)|Minimum count of rows containing non-null values (find empty column)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count.|:material-check-bold:|
-|[`daily_not_nulls_count`](./not-nulls-count.md#daily-not-nulls-count)|Minimum count of rows containing non-null values (find empty column)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores the most recent captured value for each day when the data quality check was evaluated.|:material-check-bold:|
-|[`monthly_not_nulls_count`](./not-nulls-count.md#monthly-not-nulls-count)|Minimum count of rows containing non-null values (find empty column)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores the most recent check result for each month when the data quality check was evaluated.|:material-check-bold:|
-|[`daily_partition_not_nulls_count`](./not-nulls-count.md#daily-partition-not-nulls-count)|Minimum count of rows containing non-null values (find empty column)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores a separate data quality check result for each daily partition.|:material-check-bold:|
-|[`monthly_partition_not_nulls_count`](./not-nulls-count.md#monthly-partition-not-nulls-count)|Minimum count of rows containing non-null values (find empty column)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores a separate data quality check result for each monthly partition.|:material-check-bold:|
+|[`profile_not_nulls_count`](./not-nulls-count.md#profile-not-nulls-count)|Minimum count of rows containing non-null values|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count.|:material-check-bold:|
+|[`daily_not_nulls_count`](./not-nulls-count.md#daily-not-nulls-count)|Minimum count of rows containing non-null values|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores the most recent captured value for each day when the data quality check was evaluated.|:material-check-bold:|
+|[`monthly_not_nulls_count`](./not-nulls-count.md#monthly-not-nulls-count)|Minimum count of rows containing non-null values|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores the most recent check result for each month when the data quality check was evaluated.|:material-check-bold:|
+|[`daily_partition_not_nulls_count`](./not-nulls-count.md#daily-partition-not-nulls-count)|Minimum count of rows containing non-null values|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores a separate data quality check result for each daily partition.|:material-check-bold:|
+|[`monthly_partition_not_nulls_count`](./not-nulls-count.md#monthly-partition-not-nulls-count)|Minimum count of rows containing non-null values|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column. Raises a data quality issue when the count of non-null values is below min_count. Stores a separate data quality check result for each monthly partition.|:material-check-bold:|
@@ -78,11 +78,11 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
| Data quality check name | Friendly name | Check type | Description | Standard |
|-------------------------|---------------|------------|-------------|----------|
-|[`profile_not_nulls_percent`](./not-nulls-percent.md#profile-not-nulls-percent)|Minimum percentage of rows containing non-null values (find empty column)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage.|:material-check-bold:|
-|[`daily_not_nulls_percent`](./not-nulls-percent.md#daily-not-nulls-percent)|Minimum percentage of rows containing non-null values (find empty column)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores the most recent captured value for each day when the data quality check was evaluated.|:material-check-bold:|
-|[`monthly_not_nulls_percent`](./not-nulls-percent.md#monthly-not-nulls-percent)|Minimum percentage of rows containing non-null values (find empty column)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores the most recent check result for each month when the data quality check was evaluated.|:material-check-bold:|
-|[`daily_partition_not_nulls_percent`](./not-nulls-percent.md#daily-partition-not-nulls-percent)|Minimum percentage of rows containing non-null values (find empty column)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores a separate data quality check result for each daily partition.|:material-check-bold:|
-|[`monthly_partition_not_nulls_percent`](./not-nulls-percent.md#monthly-partition-not-nulls-percent)|Minimum percentage of rows containing non-null values (find empty column)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores a separate data quality check result for each monthly partition.|:material-check-bold:|
+|[`profile_not_nulls_percent`](./not-nulls-percent.md#profile-not-nulls-percent)|Minimum percentage of rows containing non-null values|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage.|:material-check-bold:|
+|[`daily_not_nulls_percent`](./not-nulls-percent.md#daily-not-nulls-percent)|Minimum percentage of rows containing non-null values|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores the most recent captured value for each day when the data quality check was evaluated.|:material-check-bold:|
+|[`monthly_not_nulls_percent`](./not-nulls-percent.md#monthly-not-nulls-percent)|Minimum percentage of rows containing non-null values|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores the most recent check result for each month when the data quality check was evaluated.|:material-check-bold:|
+|[`daily_partition_not_nulls_percent`](./not-nulls-percent.md#daily-partition-not-nulls-percent)|Minimum percentage of rows containing non-null values|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores a separate data quality check result for each daily partition.|:material-check-bold:|
+|[`monthly_partition_not_nulls_percent`](./not-nulls-percent.md#monthly-partition-not-nulls-percent)|Minimum percentage of rows containing non-null values|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below min_percentage. Stores a separate data quality check result for each monthly partition.|:material-check-bold:|
diff --git a/docs/checks/column/nulls/not-nulls-count.md b/docs/checks/column/nulls/not-nulls-count.md
index 42ecdff436..8fa402d60a 100644
--- a/docs/checks/column/nulls/not-nulls-count.md
+++ b/docs/checks/column/nulls/not-nulls-count.md
@@ -21,7 +21,7 @@ Verifies that a column contains a minimum number of non-null values. The default
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`profile_not_nulls_count`|Minimum count of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)| |[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
+|`profile_not_nulls_count`|Minimum count of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)| |[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
**Command-line examples**
@@ -846,7 +846,7 @@ Verifies that a column contains a minimum number of non-null values. The default
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`daily_not_nulls_count`|Minimum count of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
+|`daily_not_nulls_count`|Minimum count of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
**Command-line examples**
@@ -1673,7 +1673,7 @@ Verifies that a column contains a minimum number of non-null values. The default
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`monthly_not_nulls_count`|Minimum count of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
+|`monthly_not_nulls_count`|Minimum count of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
**Command-line examples**
@@ -2500,7 +2500,7 @@ Verifies that a column contains a minimum number of non-null values. The default
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`daily_partition_not_nulls_count`|Minimum count of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
+|`daily_partition_not_nulls_count`|Minimum count of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
**Command-line examples**
@@ -3431,7 +3431,7 @@ Verifies that a column contains a minimum number of non-null values. The default
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`monthly_partition_not_nulls_count`|Minimum count of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
+|`monthly_partition_not_nulls_count`|Minimum count of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_count*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-count)|[*min_count*](../../../reference/rules/Comparison.md#min-count)|:material-check-bold:|
**Command-line examples**
diff --git a/docs/checks/column/nulls/not-nulls-percent.md b/docs/checks/column/nulls/not-nulls-percent.md
index a3f2c284e9..ea7c8a5b6a 100644
--- a/docs/checks/column/nulls/not-nulls-percent.md
+++ b/docs/checks/column/nulls/not-nulls-percent.md
@@ -22,7 +22,7 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`profile_not_nulls_percent`|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)| |[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
+|`profile_not_nulls_percent`|Minimum percentage of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[profiling](../../../dqo-concepts/definition-of-data-quality-checks/data-profiling-checks.md)| |[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
**Command-line examples**
@@ -971,7 +971,7 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`daily_not_nulls_percent`|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
+|`daily_not_nulls_percent`|Minimum percentage of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
**Command-line examples**
@@ -1922,7 +1922,7 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`monthly_not_nulls_percent`|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
+|`monthly_not_nulls_percent`|Minimum percentage of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[monitoring](../../../dqo-concepts/definition-of-data-quality-checks/data-observability-monitoring-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
**Command-line examples**
@@ -2873,7 +2873,7 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`daily_partition_not_nulls_percent`|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
+|`daily_partition_not_nulls_percent`|Minimum percentage of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|daily|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
**Command-line examples**
@@ -3928,7 +3928,7 @@ Detects incomplete columns that contain too few non-null values. Measures the pe
|Data quality check name|Friendly name|Category|Check type|Time scale|Quality dimension|Sensor definition|Quality rule|Standard|
|-----------------------|-------------|--------|----------|----------|-----------------|-----------------|------------|--------|
-|`monthly_partition_not_nulls_percent`|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
+|`monthly_partition_not_nulls_percent`|Minimum percentage of rows containing non-null values|[nulls](../../../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|[partitioned](../../../dqo-concepts/definition-of-data-quality-checks/partition-checks.md)|monthly|[Completeness](../../../dqo-concepts/data-quality-dimensions.md#data-completeness)|[*not_null_percent*](../../../reference/sensors/column/nulls-column-sensors.md#not-null-percent)|[*min_percent*](../../../reference/rules/Comparison.md#min-percent)|:material-check-bold:|
**Command-line examples**
diff --git a/docs/dqo-concepts/data-quality-dimensions.md b/docs/dqo-concepts/data-quality-dimensions.md
index e01ec898ce..9d4c896d66 100644
--- a/docs/dqo-concepts/data-quality-dimensions.md
+++ b/docs/dqo-concepts/data-quality-dimensions.md
@@ -208,8 +208,8 @@ The following table lists data quality checks that detect completeness issues on
|[*nulls_count*](../checks/column/nulls/nulls-count.md)|Maximum count of rows containing null values (incomplete column)|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects incomplete columns that contain any *null* values. Counts the number of rows having a null value. Raises a data quality issue when the count of null values is above a *max_count* threshold.|:material-check-bold:|
|[*nulls_percent*](../checks/column/nulls/nulls-percent.md)|Maximum percentage of rows containing null values (incomplete column)|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects incomplete columns that contain any *null* values. Measures the percentage of rows having a null value. Raises a data quality issue when the percentage of null values is above a *max_percent* threshold. Configure this check to accept a given percentage of null values by setting the *max_percent* parameter.|:material-check-bold:|
|[*nulls_percent_anomaly*](../checks/column/nulls/nulls-percent-anomaly.md)|Abnormal change in percentage of null values. Measured as a percentile of anomalous measures.|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects day-to-day anomalies in the percentage of *null* values. Measures the percentage of rows having a *null* value. Raises a data quality issue when the rate of null values increases or decreases too much.|:material-check-bold:|
-|[*not_nulls_count*](../checks/column/nulls/not-nulls-count.md)|Minimum count of rows containing non-null values (find empty column)|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column.|:material-check-bold:|
-|[*not_nulls_percent*](../checks/column/nulls/not-nulls-percent.md)|Minimum percentage of rows containing non-null values (find empty column)|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below *min_percentage*. The default value of the *min_percentage* parameter is 100.0, but DQOps supports setting a lower value to accept some nulls.|:material-check-bold:|
+|[*not_nulls_count*](../checks/column/nulls/not-nulls-count.md)|Minimum count of rows containing non-null values|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Verifies that a column contains a minimum number of non-null values. The default value of the *min_count* parameter is 1 to detect at least one value in a monitored column.|:material-check-bold:|
+|[*not_nulls_percent*](../checks/column/nulls/not-nulls-percent.md)|Minimum percentage of rows containing non-null values|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects incomplete columns that contain too few non-null values. Measures the percentage of rows that have non-null values. Raises a data quality issue when the percentage of non-null values is below *min_percentage*. The default value of the *min_percentage* parameter is 100.0, but DQOps supports setting a lower value to accept some nulls.|:material-check-bold:|
|[*empty_column_found*](../checks/column/nulls/empty-column-found.md)|Find an empty column|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects empty columns that contain only *null* values. Counts the number of rows that have non-null values. Raises a data quality issue when the count of non-null values is below *min_count*. The default value of the *min_count* parameter is 1, but DQOps supports setting a higher number to assert that a column has at least that many non-null values.|:material-check-bold:|
|[*nulls_percent_change*](../checks/column/nulls/nulls-percent-change.md)|Maximum percentage of change in the count of null values|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects relative increases or decreases in the percentage of null values since the last measured percentage. Measures the percentage of null values for each day. Raises a data quality issue when the change in the percentage of null values is above *max_percent* of the previous percentage.| |
|[*nulls_percent_change_1_day*](../checks/column/nulls/nulls-percent-change-1-day.md)|Maximum percentage of change in the count of null values vs 1 day ago|[nulls](../categories-of-data-quality-checks/how-to-detect-empty-or-incomplete-columns-with-nulls.md)|Detects relative increases or decreases in the percentage of null values since the previous day. Measures the percentage of null values for each day. Raises a data quality issue when the change in the percentage of null values is above *max_percent* of the previous percentage.| |
diff --git a/dqo b/dqo
index 84bd519caa..b475196028 100755
--- a/dqo
+++ b/dqo
@@ -15,7 +15,7 @@
# limitations under the License.
#
-export DQO_VERSION=1.6.0
+export DQO_VERSION=1.6.1
# Configure local development environment overrides
if [ -f $(dirname $0)/set-dqo-envs.sh ]; then
diff --git a/dqo.cmd b/dqo.cmd
index d5f67072bf..94951abc76 100644
--- a/dqo.cmd
+++ b/dqo.cmd
@@ -15,7 +15,7 @@
@REM limitations under the License.
@REM
-set DQO_VERSION=1.6.0
+set DQO_VERSION=1.6.1
rem Configure local development environment overrides
if exist "%~dp0set-dqo-envs.cmd" (
diff --git a/dqops/pom.xml b/dqops/pom.xml
index 3fd777621b..fe6cc285b3 100644
--- a/dqops/pom.xml
+++ b/dqops/pom.xml
@@ -27,7 +27,7 @@
com.dqopsdqo-dqops
- 1.6.0
+ 1.6.1jardqo-dqopsDQOps Data Quality Operations Center
diff --git a/dqops/src/main/frontend/package.json b/dqops/src/main/frontend/package.json
index 7dbfab3911..40018a90fd 100644
--- a/dqops/src/main/frontend/package.json
+++ b/dqops/src/main/frontend/package.json
@@ -1,6 +1,6 @@
{
"name": "DQOps",
- "version": "1.6.0",
+ "version": "1.6.1",
"private": true,
"dependencies": {
"@codemirror/lang-python": "6.1.3",
diff --git a/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsCountCheckSpec.java b/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsCountCheckSpec.java
index eb20f4ccd5..3a187a9ffa 100644
--- a/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsCountCheckSpec.java
+++ b/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsCountCheckSpec.java
@@ -163,7 +163,7 @@ protected ChildHierarchyNodeFieldMap getChildMap() {
@Override
@JsonIgnore
public String getFriendlyName() {
- return "Minimum count of rows containing non-null values (find empty column)";
+ return "Minimum count of rows containing non-null values";
}
/**
diff --git a/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsPercentCheckSpec.java b/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsPercentCheckSpec.java
index 0235025254..23c2fa183e 100644
--- a/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsPercentCheckSpec.java
+++ b/dqops/src/main/java/com/dqops/checks/column/checkspecs/nulls/ColumnNotNullsPercentCheckSpec.java
@@ -166,7 +166,7 @@ protected ChildHierarchyNodeFieldMap getChildMap() {
@Override
@JsonIgnore
public String getFriendlyName() {
- return "Minimum percentage of rows containing non-null values (find empty column)";
+ return "Minimum percentage of rows containing non-null values";
}
/**
diff --git a/dqops/src/main/resources/banner.txt b/dqops/src/main/resources/banner.txt
index a75e0baf4a..bf79928984 100644
--- a/dqops/src/main/resources/banner.txt
+++ b/dqops/src/main/resources/banner.txt
@@ -3,4 +3,4 @@
| |) | | (_) | | (_) | | '_ \ (_-<
|___/ \__\_\ \___/ | .__/ /__/
|_|
- :: DQOps Data Quality Operations Center :: (v1.6.0)
+ :: DQOps Data Quality Operations Center :: (v1.6.1)
diff --git a/home/checks/column/monitoring/daily/nulls/daily_not_nulls_count.dqocheck.yaml b/home/checks/column/monitoring/daily/nulls/daily_not_nulls_count.dqocheck.yaml
index 90e0b16212..3a085ff2e8 100644
--- a/home/checks/column/monitoring/daily/nulls/daily_not_nulls_count.dqocheck.yaml
+++ b/home/checks/column/monitoring/daily/nulls/daily_not_nulls_count.dqocheck.yaml
@@ -9,6 +9,6 @@ spec:
in a monitored column. Raises a data quality issue when the count of non-null
values is below min_count. Stores the most recent captured value for each day
when the data quality check was evaluated.
- friendly_name: Minimum count of rows containing non-null values (find empty column)
+ friendly_name: Minimum count of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/monitoring/daily/nulls/daily_not_nulls_percent.dqocheck.yaml b/home/checks/column/monitoring/daily/nulls/daily_not_nulls_percent.dqocheck.yaml
index 1a38b72cbe..9fc3ac4764 100644
--- a/home/checks/column/monitoring/daily/nulls/daily_not_nulls_percent.dqocheck.yaml
+++ b/home/checks/column/monitoring/daily/nulls/daily_not_nulls_percent.dqocheck.yaml
@@ -8,7 +8,6 @@ spec:
the percentage of rows that have non-null values. Raises a data quality issue
when the percentage of non-null values is below min_percentage. Stores the most
recent captured value for each day when the data quality check was evaluated.
- friendly_name: Minimum percentage of rows containing non-null values (find empty
- column)
+ friendly_name: Minimum percentage of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_count.dqocheck.yaml b/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_count.dqocheck.yaml
index 011e7b632c..134146a28d 100644
--- a/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_count.dqocheck.yaml
+++ b/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_count.dqocheck.yaml
@@ -9,6 +9,6 @@ spec:
in a monitored column. Raises a data quality issue when the count of non-null
values is below min_count. Stores the most recent check result for each month
when the data quality check was evaluated.
- friendly_name: Minimum count of rows containing non-null values (find empty column)
+ friendly_name: Minimum count of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_percent.dqocheck.yaml b/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_percent.dqocheck.yaml
index 7c6730d799..c6c9302787 100644
--- a/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_percent.dqocheck.yaml
+++ b/home/checks/column/monitoring/monthly/nulls/monthly_not_nulls_percent.dqocheck.yaml
@@ -8,7 +8,6 @@ spec:
the percentage of rows that have non-null values. Raises a data quality issue
when the percentage of non-null values is below min_percentage. Stores the most
recent check result for each month when the data quality check was evaluated.
- friendly_name: Minimum percentage of rows containing non-null values (find empty
- column)
+ friendly_name: Minimum percentage of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_count.dqocheck.yaml b/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_count.dqocheck.yaml
index 6bbb395031..23873d04f9 100644
--- a/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_count.dqocheck.yaml
+++ b/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_count.dqocheck.yaml
@@ -9,6 +9,6 @@ spec:
in a monitored column. Raises a data quality issue when the count of non-null
values is below min_count. Stores a separate data quality check result for each
daily partition.
- friendly_name: Minimum count of rows containing non-null values (find empty column)
+ friendly_name: Minimum count of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_percent.dqocheck.yaml b/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_percent.dqocheck.yaml
index c0b54ee9f3..914d3c84a4 100644
--- a/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_percent.dqocheck.yaml
+++ b/home/checks/column/partitioned/daily/nulls/daily_partition_not_nulls_percent.dqocheck.yaml
@@ -8,7 +8,6 @@ spec:
the percentage of rows that have non-null values. Raises a data quality issue
when the percentage of non-null values is below min_percentage. Stores a separate
data quality check result for each daily partition.
- friendly_name: Minimum percentage of rows containing non-null values (find empty
- column)
+ friendly_name: Minimum percentage of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_count.dqocheck.yaml b/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_count.dqocheck.yaml
index cbac0a9801..a669973812 100644
--- a/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_count.dqocheck.yaml
+++ b/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_count.dqocheck.yaml
@@ -9,6 +9,6 @@ spec:
in a monitored column. Raises a data quality issue when the count of non-null
values is below min_count. Stores a separate data quality check result for each
monthly partition.
- friendly_name: Minimum count of rows containing non-null values (find empty column)
+ friendly_name: Minimum count of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_percent.dqocheck.yaml b/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_percent.dqocheck.yaml
index 5f131f4993..f515944b29 100644
--- a/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_percent.dqocheck.yaml
+++ b/home/checks/column/partitioned/monthly/nulls/monthly_partition_not_nulls_percent.dqocheck.yaml
@@ -8,7 +8,6 @@ spec:
the percentage of rows that have non-null values. Raises a data quality issue
when the percentage of non-null values is below min_percentage. Stores a separate
data quality check result for each monthly partition.
- friendly_name: Minimum percentage of rows containing non-null values (find empty
- column)
+ friendly_name: Minimum percentage of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/profiling/nulls/profile_not_nulls_count.dqocheck.yaml b/home/checks/column/profiling/nulls/profile_not_nulls_count.dqocheck.yaml
index 7f3db07ba9..05c9e8561d 100644
--- a/home/checks/column/profiling/nulls/profile_not_nulls_count.dqocheck.yaml
+++ b/home/checks/column/profiling/nulls/profile_not_nulls_count.dqocheck.yaml
@@ -8,6 +8,6 @@ spec:
The default value of the *min_count* parameter is 1 to detect at least one value
in a monitored column. Raises a data quality issue when the count of non-null
values is below min_count.
- friendly_name: Minimum count of rows containing non-null values (find empty column)
+ friendly_name: Minimum count of rows containing non-null values
standard: true
default_severity: error
diff --git a/home/checks/column/profiling/nulls/profile_not_nulls_percent.dqocheck.yaml b/home/checks/column/profiling/nulls/profile_not_nulls_percent.dqocheck.yaml
index bbc90c5b3c..64b05022f8 100644
--- a/home/checks/column/profiling/nulls/profile_not_nulls_percent.dqocheck.yaml
+++ b/home/checks/column/profiling/nulls/profile_not_nulls_percent.dqocheck.yaml
@@ -7,7 +7,6 @@ spec:
help_text: Detects incomplete columns that contain too few non-null values. Measures
the percentage of rows that have non-null values. Raises a data quality issue
when the percentage of non-null values is below min_percentage.
- friendly_name: Minimum percentage of rows containing non-null values (find empty
- column)
+ friendly_name: Minimum percentage of rows containing non-null values
standard: true
default_severity: error
diff --git a/lib/pom.xml b/lib/pom.xml
index a858fc26fc..95212f8375 100644
--- a/lib/pom.xml
+++ b/lib/pom.xml
@@ -11,7 +11,7 @@
com.dqopsdqo-lib
- 1.6.0
+ 1.6.1libPOM for a list of dependencies to libraries that should be distributed in the "lib" folder, especially all JDBC drivers.jar
diff --git a/pom.xml b/pom.xml
index fe16dc853a..c4a3991661 100644
--- a/pom.xml
+++ b/pom.xml
@@ -5,7 +5,7 @@
com.dqopsdqo-data-quality-observer
- 1.6.0
+ 1.6.1pomDQOps Data Quality Operations Center