-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathoptimizer.py
70 lines (61 loc) · 2.59 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from torch import optim as optim
def build_optimizer(config, model):
"""
Build optimizer, set weight decay of normalization to 0 by default.
"""
skip = {}
skip_keywords = {}
if hasattr(model, 'no_weight_decay'):
skip = model.no_weight_decay()
if hasattr(model, 'no_weight_decay_keywords'):
skip_keywords = model.no_weight_decay_keywords()
parameters = set_weight_decay(model, skip, skip_keywords,config.TRAIN.BASE_LR)
opt_lower = config.TRAIN.OPTIMIZER.NAME.lower()
optimizer = None
if opt_lower == 'sgd':
optimizer = optim.SGD(parameters, momentum=config.TRAIN.OPTIMIZER.MOMENTUM, nesterov=True,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
elif opt_lower == 'adamw':
optimizer = optim.AdamW(parameters, eps=config.TRAIN.OPTIMIZER.EPS, betas=config.TRAIN.OPTIMIZER.BETAS,
lr=config.TRAIN.BASE_LR, weight_decay=config.TRAIN.WEIGHT_DECAY)
return optimizer
# def set_weight_decay(model, skip_list=(), skip_keywords=(),lr=0.0):
# has_decay = []
# no_decay = []
# high_lr = []
# for name, param in model.named_parameters():
# if not param.requires_grad:
# continue # frozen weights
# if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
# check_keywords_in_name(name, skip_keywords):
# if 'meta' in name:
# high_lr.append(param)
# else:
# no_decay.append(param)
# # print(f"{name} has no weight decay")
# else:
# has_decay.append(param)
# return [{'params': has_decay},
# # {'params':high_lr,'weight_decay': 0.,'lr':lr*10},
# {'params':high_lr,'lr':lr*20},
# {'params': no_decay, 'weight_decay': 0.}]
def set_weight_decay(model, skip_list=(), skip_keywords=(),lr=0.0):
has_decay = []
no_decay = []
for name, param in model.named_parameters():
if not param.requires_grad:
continue # frozen weights
if len(param.shape) == 1 or name.endswith(".bias") or (name in skip_list) or \
check_keywords_in_name(name, skip_keywords):
no_decay.append(param)
# print(f"{name} has no weight decay")
else:
has_decay.append(param)
return [{'params': has_decay},
{'params': no_decay, 'weight_decay': 0.}]
def check_keywords_in_name(name, keywords=()):
isin = False
for keyword in keywords:
if keyword in name:
isin = True
return isin