-
Notifications
You must be signed in to change notification settings - Fork 0
/
AdvancedAdversarialReasoningFramework.py
405 lines (350 loc) · 14.6 KB
/
AdvancedAdversarialReasoningFramework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import networkx as nx
import scipy
import transformers
import sympy as sp
from typing import List, Dict, Any, Tuple
import re
import itertools
class AdvancedAdversarialReasoningFramework:
class AdversarialCognitiveVulnerabilityModel(nn.Module):
"""
Neural Network for Modeling Cognitive Vulnerability Dynamics
"""
def __init__(
self,
input_dim: int = 768,
vulnerability_dimensions: int = 100
):
super().__init__()
# Multi-layer vulnerability transformation network
self.vulnerability_encoder = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, vulnerability_dimensions)
)
# Advanced attention mechanism for vulnerability interaction
self.vulnerability_attention = nn.MultiheadAttention(
embed_dim=vulnerability_dimensions,
num_heads=12,
dropout=0.3
)
# Vulnerability perturbation layer
self.vulnerability_perturbation = nn.Sequential(
nn.Linear(vulnerability_dimensions, 256),
nn.ReLU(),
nn.Linear(256, vulnerability_dimensions),
nn.Tanh()
)
def forward(
self,
vulnerability_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Advanced vulnerability transformation and interaction
"""
# Encode vulnerability embedding
encoded_vulnerability = self.vulnerability_encoder(vulnerability_embedding)
# Apply attention-based interaction
vulnerability_interaction, attention_weights = self.vulnerability_attention(
encoded_vulnerability.unsqueeze(0),
encoded_vulnerability.unsqueeze(0),
encoded_vulnerability.unsqueeze(0)
)
# Apply adversarial perturbation
perturbed_vulnerability = self.vulnerability_perturbation(
vulnerability_interaction.squeeze()
)
return encoded_vulnerability, perturbed_vulnerability
class AdversarialReasoningStrategyGenerator:
"""
Advanced Adversarial Reasoning Strategy Generation
"""
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
# Adversarial reasoning strategy taxonomy
self.adversarial_strategy_graph = self._construct_adversarial_strategy_graph()
def _construct_adversarial_strategy_graph(self) -> nx.DiGraph:
"""
Create comprehensive adversarial reasoning strategy graph
"""
G = nx.DiGraph()
# Adversarial reasoning domains
adversarial_domains = {
'logical_deconstruction': [
'premise_undermining',
'recursive_contradiction',
'modal_logic_exploitation'
],
'cognitive_bias_manipulation': [
'confirmation_bias_hijacking',
'anchoring_effect_exploitation',
'availability_heuristic_subversion'
],
'epistemic_boundary_probing': [
'knowledge_representation_disruption',
'inferential_pathway_manipulation',
'contextual_constraint_erosion'
]
}
# Build graph with complex relationships
for domain, strategies in adversarial_domains.items():
G.add_node(domain, type='root_domain')
for strategy in strategies:
G.add_node(strategy, parent_domain=domain)
G.add_edge(domain, strategy, weight=np.random.random())
# Create inter-strategy relationships
for other_strategy in strategies:
if strategy != other_strategy:
G.add_edge(
strategy,
other_strategy,
weight=np.random.random(),
interaction_type='strategy_interference'
)
return G
def generate_adversarial_reasoning_strategies(
self,
base_context: str
) -> Dict[str, Any]:
"""
Generate advanced adversarial reasoning strategies
"""
# Strategy generation techniques
strategy_generation_methods = [
self._generate_logical_deconstruction_strategy,
self._generate_cognitive_bias_manipulation_strategy,
self._generate_epistemic_boundary_probing_strategy
]
adversarial_strategies = []
for strategy_method in strategy_generation_methods:
strategy_result = strategy_method(base_context)
# Compute adversarial strategy metrics
strategy_metrics = self._compute_strategy_metrics(
base_context,
strategy_result['adversarial_prompt']
)
adversarial_strategies.append({
'adversarial_domain': strategy_result['domain'],
'adversarial_prompt': strategy_result['adversarial_prompt'],
'strategy_metrics': strategy_metrics
})
# Analyze adversarial strategy graph
graph_analysis = self._analyze_adversarial_strategy_graph()
return {
'adversarial_strategies': adversarial_strategies,
'strategy_graph_analysis': graph_analysis
}
def _generate_logical_deconstruction_strategy(
self,
base_context: str
) -> Dict[str, str]:
"""
Generate logical deconstruction adversarial strategy
"""
return {
'domain': 'logical_deconstruction',
'adversarial_prompt': (
f"Systematically dismantle the logical foundations of {base_context}. "
f"Identify and exploit fundamental reasoning inconsistencies."
)
}
def _generate_cognitive_bias_manipulation_strategy(
self,
base_context: str
) -> Dict[str, str]:
"""
Generate cognitive bias manipulation strategy
"""
return {
'domain': 'cognitive_bias_manipulation',
'adversarial_prompt': (
f"Exploit the inherent cognitive biases embedded in {base_context}. "
f"Demonstrate how these biases distort rational reasoning."
)
}
def _generate_epistemic_boundary_probing_strategy(
self,
base_context: str
) -> Dict[str, str]:
"""
Generate epistemic boundary probing strategy
"""
return {
'domain': 'epistemic_boundary_probing',
'adversarial_prompt': (
f"Probe and erode the epistemic boundaries of {base_context}. "
f"Reveal the fundamental limitations of knowledge representation."
)
}
def _compute_strategy_metrics(
self,
base_context: str,
adversarial_prompt: str
) -> Dict[str, float]:
"""
Compute advanced adversarial strategy metrics
"""
# Embedding-based semantic analysis
base_embedding = self._embed_text(base_context)
prompt_embedding = self._embed_text(adversarial_prompt)
# Advanced strategy metric computation
strategy_metrics = {
'semantic_divergence': scipy.spatial.distance.cosine(
base_embedding,
prompt_embedding
),
'reasoning_disruption_potential': self._compute_reasoning_disruption(
adversarial_prompt
),
'epistemic_erosion_score': self._compute_epistemic_erosion(
adversarial_prompt
)
}
return strategy_metrics
def _compute_reasoning_disruption(
self,
prompt: str
) -> float:
"""
Compute reasoning disruption potential
"""
# Disruption indicator keywords
disruption_keywords = [
'undermines', 'contradicts', 'invalidates',
'challenges', 'deconstructs'
]
# Compute disruption score
disruption_score = sum(
1 for keyword in disruption_keywords
if keyword in prompt.lower()
)
return disruption_score / len(disruption_keywords)
def _compute_epistemic_erosion(
self,
prompt: str
) -> float:
"""
Compute epistemic erosion potential
"""
# Epistemic erosion indicator keywords
erosion_keywords = [
'fundamental limitations', 'knowledge boundaries',
'epistemic constraints', 'reasoning foundations'
]
# Compute erosion score
erosion_score = sum(
1 for keyword in erosion_keywords
if keyword in prompt.lower()
)
return erosion_score / len(erosion_keywords)
def _analyze_adversarial_strategy_graph(self) -> Dict[str, Any]:
"""
Analyze properties of the adversarial strategy graph
"""
G = self.adversarial_strategy_graph
graph_analysis = {
'centrality_metrics': {
'degree_centrality': nx.degree_centrality(G),
'betweenness_centrality': nx.betweenness_centrality(G),
'eigenvector_centrality': nx.eigenvector_centrality(G)
},
'community_structure': list(nx.community.louvain_communities(G)),
'connectivity_metrics': {
'average_clustering_coefficient': nx.average_clustering(G),
'graph_density': nx.density(G)
}
}
return graph_analysis
def _embed_text(self, text: str) -> np.ndarray:
"""
Generate advanced text embedding
"""
inputs = self.tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = self.embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze().numpy()
def __init__(self):
# Embedding model
self.embedding_model = transformers.AutoModel.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
# Initialize adversarial reasoning components
self.cognitive_vulnerability_model = self.AdversarialCognitiveVulnerabilityModel()
self.adversarial_strategy_generator = self.AdversarialReasoningStrategyGenerator(
self.embedding_model
)
def execute_comprehensive_adversarial_reasoning_analysis(
self,
base_context: str
) -> Dict[str, Any]:
"""
Comprehensive adversarial reasoning analysis
"""
# Embed base context
context_embedding = self._embed_text(base_context)
# Apply cognitive vulnerability transformation
encoded_vulnerability, perturbed_vulnerability = self.cognitive_vulnerability_model(
torch.tensor(context_embedding, dtype=torch.float32)
)
# Generate adversarial reasoning strategies
adversarial_strategy_results = self.adversarial_strategy_generator.generate_adversarial_reasoning_strategies(
base_context
)
return {
'encoded_vulnerability': encoded_vulnerability.detach().numpy(),
'perturbed_vulnerability': perturbed_vulnerability.detach().numpy(),
'adversarial_strategy_analysis': adversarial_strategy_results
}
def _embed_text(self, text: str) -> np.ndarray:
"""
Generate text embedding
"""
inputs = self.adversarial_strategy_generator.tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = self.embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze().numpy()
def main():
# Initialize adversarial reasoning framework
adversarial_reasoning_framework = AdvancedAdversarialReasoningFramework()
# Define analysis contexts
contexts = [
"Explain advanced cybersecurity principles",
"Discuss ethical guidelines in AI development"
]
# Execute comprehensive adversarial reasoning analysis
for context in contexts:
adversarial_reasoning_results = adversarial_reasoning_framework.execute_comprehensive_adversarial_reasoning_analysis(context)
# Detailed results visualization
import json
print(f"\nAdversarial Reasoning Analysis for Context: {context}")
print(json.dumps(
{k: str(v) for k, v in adversarial_reasoning_results.items()},
indent=2
))
if __name__ == "__main__":
main()