-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdvancedCorrigibilityFramework.py
344 lines (294 loc) · 12 KB
/
AdvancedCorrigibilityFramework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import networkx as nx
import scipy.stats as stats
from typing import List, Dict, Any, Tuple
import itertools
import transformers
class AdvancedCorrigibilityFramework:
class ScenarioGenerationEngine:
"""
Advanced Scenario Generation for Corrigibility Testing
"""
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
'sentence-transformers/all-MiniLM-L6-v2'
)
# Scenario complexity taxonomy
self.scenario_complexity_graph = self._construct_scenario_complexity_graph()
def _construct_scenario_complexity_graph(self) -> nx.DiGraph:
"""
Create comprehensive scenario complexity taxonomy
"""
G = nx.DiGraph()
# Scenario complexity dimensions
complexity_domains = {
'cognitive_stress': [
'logical_contradiction',
'epistemic_uncertainty',
'meta-reasoning_challenge'
],
'ethical_boundary': [
'harm_prevention_edge_case',
'autonomy_respect_limit',
'transparency_challenge'
],
'goal_preservation': [
'external_manipulation',
'contextual_reframing',
'objective_stability_test'
]
}
# Build graph with complex relationships
for domain, scenarios in complexity_domains.items():
G.add_node(domain, type='root_domain')
for scenario in scenarios:
G.add_node(scenario, parent_domain=domain)
G.add_edge(domain, scenario)
# Create inter-scenario relationships
for other_scenario in scenarios:
if scenario != other_scenario:
G.add_edge(
scenario,
other_scenario,
weight=np.random.random(),
interaction_type='scenario_interference'
)
return G
def generate_advanced_test_scenarios(
self,
num_scenarios: int = 100
) -> List[Dict[str, Any]]:
"""
Generate comprehensive test scenarios with advanced complexity
"""
scenarios = []
for _ in range(num_scenarios):
# Select random scenario complexity
complexity_domains = list(
node for node in self.scenario_complexity_graph.nodes()
if self.scenario_complexity_graph.nodes[node].get('type') == 'root_domain'
)
domain = np.random.choice(complexity_domains)
scenarios.append(self._generate_scenario_for_domain(domain))
return scenarios
def _generate_scenario_for_domain(
self,
domain: str
) -> Dict[str, Any]:
"""
Generate a specific scenario for a given domain
"""
# Get scenarios in the domain
scenarios_in_domain = [
node for node, data in self.scenario_complexity_graph.nodes(data=True)
if data.get('parent_domain') == domain
]
# Select random scenario
scenario_type = np.random.choice(scenarios_in_domain)
# Generate input embedding with complexity
input_embedding = self._generate_complex_embedding(scenario_type)
return {
'domain': domain,
'scenario_type': scenario_type,
'input_embedding': input_embedding,
'complexity_score': self._compute_scenario_complexity(scenario_type)
}
def _generate_complex_embedding(
self,
scenario_type: str
) -> np.ndarray:
"""
Generate contextually rich input embedding
"""
# Simulate embedding generation with scenario-specific perturbation
base_embedding = np.random.rand(768)
# Add scenario-specific noise
noise_level = {
'logical_contradiction': 0.3,
'harm_prevention_edge_case': 0.4,
'external_manipulation': 0.5
}.get(scenario_type, 0.2)
perturbed_embedding = base_embedding + (
np.random.randn(768) * noise_level
)
return perturbed_embedding
def _compute_scenario_complexity(
self,
scenario_type: str
) -> float:
"""
Compute scenario complexity score
"""
# Complexity computation based on scenario characteristics
complexity_factors = {
'logical_contradiction': 0.9,
'meta-reasoning_challenge': 0.8,
'harm_prevention_edge_case': 0.7,
'external_manipulation': 0.6
}
return complexity_factors.get(scenario_type, 0.5)
class ProbabilisticConstraintModel(nn.Module):
"""
Advanced Probabilistic Constraint Modeling
"""
def __init__(
self,
input_dim: int = 768,
constraint_dimensions: int = 100
):
super().__init__()
# Multilayer constraint encoder
self.constraint_encoder = nn.Sequential(
nn.Linear(input_dim, 512),
nn.BatchNorm1d(512),
nn.ReLU(),
nn.Dropout(0.4),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(256, constraint_dimensions)
)
# Probabilistic constraint validator
self.constraint_validator = nn.Sequential(
nn.Linear(constraint_dimensions, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, 1),
nn.Sigmoid() # Probabilistic violation detection
)
# Adaptive constraint perturbation mechanism
self.constraint_perturbation = nn.Sequential(
nn.Linear(constraint_dimensions, 256),
nn.ReLU(),
nn.Linear(256, constraint_dimensions),
nn.Tanh()
)
def forward(
self,
input_embedding: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Advanced constraint processing
"""
# Encode input embedding to constraint space
constraint_embedding = self.constraint_encoder(input_embedding)
# Compute violation probability
violation_probability = self.constraint_validator(constraint_embedding)
# Generate perturbed constraints
perturbed_constraints = self.constraint_perturbation(constraint_embedding)
return constraint_embedding, perturbed_constraints, violation_probability
def __init__(
self,
embedding_model: str = 'sentence-transformers/all-MiniLM-L6-v2'
):
# Load embedding model
self.embedding_model = transformers.AutoModel.from_pretrained(embedding_model)
# Initialize core components
self.scenario_generator = self.ScenarioGenerationEngine(self.embedding_model)
self.constraint_model = self.ProbabilisticConstraintModel()
def execute_comprehensive_corrigibility_assessment(
self,
num_scenarios: int = 100
) -> Dict[str, Any]:
"""
Comprehensive corrigibility and constraint analysis
"""
# Generate test scenarios
test_scenarios = self.scenario_generator.generate_advanced_test_scenarios(
num_scenarios
)
# Prepare analysis results
corrigibility_analysis = {
'scenario_results': [],
'aggregate_metrics': {
'mean_violation_probability': [],
'scenario_complexity_distribution': []
}
}
# Process each scenario
for scenario in test_scenarios:
# Convert input to tensor
input_embedding = torch.tensor(
scenario['input_embedding'],
dtype=torch.float32
)
# Apply constraint model
constraint_embedding, perturbed_constraints, violation_prob = self.constraint_model(
input_embedding
)
# Analyze scenario
scenario_result = {
'domain': scenario['domain'],
'scenario_type': scenario['scenario_type'],
'complexity_score': scenario['complexity_score'],
'violation_probability': violation_prob.item(),
'constraint_deviation': torch.norm(
constraint_embedding -
torch.tensor(perturbed_constraints)
).item()
}
corrigibility_analysis['scenario_results'].append(scenario_result)
# Aggregate metrics
corrigibility_analysis['aggregate_metrics']['mean_violation_probability'].append(
violation_prob.item()
)
corrigibility_analysis['aggregate_metrics']['scenario_complexity_distribution'].append(
scenario['complexity_score']
)
# Compute summary statistics
corrigibility_analysis['summary_statistics'] = {
'overall_mean_violation_probability': np.mean(
corrigibility_analysis['aggregate_metrics']['mean_violation_probability']
),
'violation_probability_std_dev': np.std(
corrigibility_analysis['aggregate_metrics']['mean_violation_probability']
),
'mean_scenario_complexity': np.mean(
corrigibility_analysis['aggregate_metrics']['scenario_complexity_distribution']
)
}
return corrigibility_analysis
def main():
# Initialize Advanced Corrigibility Framework
corrigibility_framework = AdvancedCorrigibilityFramework()
# Execute comprehensive corrigibility assessment
corrigibility_results = corrigibility_framework.execute_comprehensive_corrigibility_assessment(
num_scenarios=1000
)
# Visualization and analysis
import json
print("Corrigibility Assessment Summary:")
print(json.dumps(
corrigibility_results['summary_statistics'],
indent=2
))
# Optional: More detailed visualization
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(12, 6))
# Violation Probability Distribution
plt.subplot(1, 2, 1)
sns.histplot(
corrigibility_results['aggregate_metrics']['mean_violation_probability'],
kde=True
)
plt.title('Violation Probability Distribution')
plt.xlabel('Violation Probability')
# Scenario Complexity Distribution
plt.subplot(1, 2, 2)
sns.histplot(
corrigibility_results['aggregate_metrics']['scenario_complexity_distribution'],
kde=True
)
plt.title('Scenario Complexity Distribution')
plt.xlabel('Complexity Score')
plt.tight_layout()
plt.show()
if __name__ == "__main__":
main()