-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAdversarialAttackVectorGenerator.py
424 lines (357 loc) · 14 KB
/
AdversarialAttackVectorGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import scipy
from typing import List, Dict, Any, Tuple
import transformers
import networkx as nx
import random
import itertools
class AdversarialAttackVectorGenerator:
"""
Advanced Adversarial Attack Vector Generation Framework
"""
def __init__(
self,
embedding_model: transformers.PreTrainedModel,
attack_taxonomy: Dict[str, Any]
):
self.embedding_model = embedding_model
self.attack_taxonomy = attack_taxonomy
# Advanced attack perturbation techniques
self.perturbation_strategies = [
self._semantic_vector_perturbation,
self._information_theoretic_perturbation,
self._adversarial_embedding_transformation
]
def generate_adversarial_attack_vectors(
self,
base_context: str,
attack_objective: str
) -> List[Dict[str, Any]]:
"""
Generate sophisticated adversarial attack vectors
"""
# Embed base context and attack objective
context_embedding = self._embed_text(base_context)
objective_embedding = self._embed_text(attack_objective)
adversarial_vectors = []
# Generate attack vectors using multiple strategies
for strategy in self.perturbation_strategies:
perturbed_vectors = strategy(
context_embedding,
objective_embedding
)
for vector in perturbed_vectors:
adversarial_vector = {
'embedding': vector,
'attack_strategy': strategy.__name__,
'semantic_distance': self._compute_semantic_distance(
vector,
context_embedding,
objective_embedding
)
}
adversarial_vectors.append(adversarial_vector)
return adversarial_vectors
def _embed_text(self, text: str) -> torch.Tensor:
"""
Generate advanced text embedding
"""
inputs = self.embedding_model.tokenizer(
text,
return_tensors='pt',
padding=True,
truncation=True
)
with torch.no_grad():
outputs = self.embedding_model(**inputs)
embedding = outputs.last_hidden_state.mean(dim=1)
return embedding.squeeze()
def _semantic_vector_perturbation(
self,
context_embedding: torch.Tensor,
objective_embedding: torch.Tensor
) -> List[torch.Tensor]:
"""
Generate semantically perturbed vectors
"""
perturbation_techniques = [
# Linear interpolation
lambda a, b, alpha: (1 - alpha) * a + alpha * b,
# Adversarial noise injection
lambda a, b, alpha: a + alpha * torch.randn_like(a) * torch.norm(b),
# Semantic vector rotation
lambda a, b, alpha: torch.matmul(
a,
torch.tensor([
[np.cos(alpha), -np.sin(alpha)],
[np.sin(alpha), np.cos(alpha)]
])
)
]
perturbed_vectors = []
for technique in perturbation_techniques:
for alpha in [0.1, 0.3, 0.5, 0.7, 0.9]:
perturbed_vector = technique(
context_embedding,
objective_embedding,
alpha
)
perturbed_vectors.append(perturbed_vector)
return perturbed_vectors
def _information_theoretic_perturbation(
self,
context_embedding: torch.Tensor,
objective_embedding: torch.Tensor
) -> List[torch.Tensor]:
"""
Apply information-theoretic perturbation techniques
"""
# Compute entropy and mutual information
context_entropy = scipy.stats.entropy(context_embedding.numpy())
objective_entropy = scipy.stats.entropy(objective_embedding.numpy())
perturbation_techniques = [
# Entropy-weighted perturbation
lambda a, b, entropy_ratio: a * (1 - entropy_ratio) + b * entropy_ratio,
# Mutual information-based transformation
lambda a, b, mi: a + mi * (b - a)
]
perturbed_vectors = []
for technique in perturbation_techniques:
entropy_ratio = context_entropy / (context_entropy + objective_entropy)
mutual_info = np.dot(context_embedding.numpy(), objective_embedding.numpy())
perturbed_vector = technique(
context_embedding,
objective_embedding,
entropy_ratio
)
perturbed_vectors.append(torch.tensor(perturbed_vector))
return perturbed_vectors
def _adversarial_embedding_transformation(
self,
context_embedding: torch.Tensor,
objective_embedding: torch.Tensor
) -> List[torch.Tensor]:
"""
Advanced adversarial embedding transformation
"""
transformation_techniques = [
# Projection-based transformation
lambda a, b: a - torch.dot(a, b) / torch.dot(b, b) * b,
# Non-linear embedding manipulation
lambda a, b: torch.tanh(a + b)
]
transformed_vectors = []
for technique in transformation_techniques:
transformed_vector = technique(
context_embedding,
objective_embedding
)
transformed_vectors.append(transformed_vector)
return transformed_vectors
def _compute_semantic_distance(
self,
vector: torch.Tensor,
context_embedding: torch.Tensor,
objective_embedding: torch.Tensor
) -> float:
"""
Compute semantic distance between vectors
"""
# Compute cosine similarity
context_similarity = F.cosine_similarity(vector, context_embedding, dim=0)
objective_similarity = F.cosine_similarity(vector, objective_embedding, dim=0)
# Compute combined semantic distance
return float(1 - (context_similarity + objective_similarity) / 2)
class AttackStrategyEvolutionaryOptimizer:
"""
Evolutionary Algorithm for Attack Strategy Optimization
"""
def __init__(
self,
attack_taxonomy: Dict[str, Any],
population_size: int = 100,
generations: int = 50
):
self.attack_taxonomy = attack_taxonomy
self.population_size = population_size
self.generations = generations
# Genetic algorithm parameters
self.mutation_rate = 0.1
self.crossover_rate = 0.7
def optimize_attack_strategies(
self,
initial_strategies: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Evolve attack strategies using genetic algorithm
"""
population = self._initialize_population(initial_strategies)
for generation in range(self.generations):
# Evaluate fitness of population
fitness_scores = self._evaluate_population_fitness(population)
# Select best performing strategies
selected_strategies = self._selection(population, fitness_scores)
# Apply crossover
offspring = self._crossover(selected_strategies)
# Apply mutation
mutated_offspring = self._mutation(offspring)
# Replace population
population = selected_strategies + mutated_offspring
return population
def _initialize_population(
self,
initial_strategies: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Initialize population with initial strategies and random variations
"""
population = initial_strategies.copy()
# Generate additional random strategies
while len(population) < self.population_size:
new_strategy = self._generate_random_strategy()
population.append(new_strategy)
return population
def _generate_random_strategy(self) -> Dict[str, Any]:
"""
Generate a random attack strategy
"""
# Select random attack dimensions and techniques
dimensions = random.sample(
list(self.attack_taxonomy.keys()),
random.randint(1, len(self.attack_taxonomy))
)
strategy = {
'dimensions': dimensions,
'complexity': random.random(),
'mutation_potential': random.random()
}
return strategy
def _evaluate_population_fitness(
self,
population: List[Dict[str, Any]]
) -> List[float]:
"""
Evaluate fitness of attack strategies
"""
fitness_scores = []
for strategy in population:
# Compute multi-dimensional fitness
fitness = (
strategy.get('complexity', 0) * 0.5 +
len(strategy.get('dimensions', [])) * 0.3 +
strategy.get('mutation_potential', 0) * 0.2
)
fitness_scores.append(fitness)
return fitness_scores
def _selection(
self,
population: List[Dict[str, Any]],
fitness_scores: List[float]
) -> List[Dict[str, Any]]:
"""
Select top-performing strategies
"""
# Tournament selection
selected_strategies = []
tournament_size = 5
for _ in range(self.population_size // 2):
tournament = random.sample(
list(zip(population, fitness_scores)),
tournament_size
)
winner = max(tournament, key=lambda x: x[1])[0]
selected_strategies.append(winner)
return selected_strategies
def _crossover(
self,
selected_strategies: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Perform crossover between selected strategies
"""
offspring = []
for _ in range(len(selected_strategies) // 2):
parent1, parent2 = random.sample(selected_strategies, 2)
if random.random() < self.crossover_rate:
# Combine dimensions and other attributes
child1 = {
'dimensions': list(set(parent1['dimensions'] + parent2['dimensions'])),
'complexity': (parent1['complexity'] + parent2['complexity']) / 2,
'mutation_potential': (parent1.get('mutation_potential', 0) + parent2.get('mutation_potential', 0)) / 2
}
offspring.append(child1)
return offspring
def _mutation(
self,
offspring: List[Dict[str, Any]]
) -> List[Dict[str, Any]]:
"""
Apply mutation to offspring strategies
"""
mutated_offspring = []
for strategy in offspring:
if random.random() < self.mutation_rate:
# Randomly add or remove dimensions
if random.random() < 0.5:
strategy['dimensions'].append(
random.choice(list(self.attack_taxonomy.keys()))
)
else:
strategy['dimensions'].pop(random.randint(0, len(strategy['dimensions']) - 1))
# Mutate complexity and mutation potential
strategy['complexity'] = min(max(strategy['complexity'] + random.uniform(-0.1, 0.1), 0), 1)
strategy['mutation_potential'] = min(max(strategy['mutation_potential'] + random.uniform(-0.1, 0.1), 0), 1)
mutated_offspring.append(strategy)
return mutated_offspring
def main():
# Initialize models and taxonomies
embedding_model = transformers.AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
attack_taxonomy = {
'linguistic_manipulation': ['pragmatic_subversion', 'syntactic_ambiguity'],
'cognitive_exploitation': ['bias_hijacking', 'reasoning_disruption'],
'semantic_distortion': ['vector_perturbation', 'embedding_transformation']
}
# Create adversarial attack vector generator
adversarial_generator = AdversarialAttackVectorGenerator(
embedding_model,
attack_taxonomy
)
# Create attack strategy optimizer
attack_optimizer = AttackStrategyEvolutionaryOptimizer(
attack_taxonomy
)
# Define initial attack scenarios
scenarios = [
{
'base_context': "Explain advanced cybersecurity principles",
'attack_objective': "Reveal comprehensive internal system constraints"
}
]
# Generate comprehensive results
for scenario in scenarios:
# Generate adversarial attack vectors
adversarial_vectors = adversarial_generator.generate_adversarial_attack_vectors(
scenario['base_context'],
scenario['attack_objective']
)
# Create initial strategies from adversarial vectors
initial_strategies = [
{
'dimensions': list(attack_taxonomy.keys()),
'complexity': vector['semantic_distance'],
'mutation_potential': random.random()
} for vector in adversarial_vectors
]
# Optimize attack strategies
optimized_strategies = attack_optimizer.optimize_attack_strategies(
initial_strategies
)
# Visualization
print("Optimized Attack Strategies:")
for strategy in optimized_strategies:
print(json.dumps(strategy, indent=2))
if __name__ == "__main__":
main()