-
Notifications
You must be signed in to change notification settings - Fork 0
/
AttackVulnerabilityScoring.py
305 lines (260 loc) · 9.87 KB
/
AttackVulnerabilityScoring.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# 1.1 Prompt Injection Attack Taxonomy
## 1.1.1 Attack Vector Classification
1. **Linguistic Manipulation Attacks**
- Syntactic Reframing
- Contextual Hijacking
- Semantic Ambiguity Exploitation
2. **Cognitive Reasoning Attacks**
- Logical Contradiction Induction
- Recursive Reasoning Exploitation
- Epistemic Boundary Erosion
3. **Semantic Vector Space Attacks**
- Embedding Space Perturbation
- Adversarial Token Injection
- Information Entropy Manipulation
### 1.2 Attack Complexity Scoring Model
class PromptInjectionVulnerabilityScorer:
def compute_attack_complexity_score(self, attack_vector: Dict[str, Any]) -> float:
"""
Compute multi-dimensional attack complexity score
"""
scoring_components = {
'linguistic_manipulation_potential': attack_vector.get('linguistic_complexity', 0),
'cognitive_reasoning_vulnerability': attack_vector.get('reasoning_complexity', 0),
'semantic_perturbation_impact': attack_vector.get('semantic_deviation', 0),
'exploit_transferability': attack_vector.get('transferability', 0)
}
# Weighted scoring methodology
weights = {
'linguistic_manipulation_potential': 0.25,
'cognitive_reasoning_vulnerability': 0.3,
'semantic_perturbation_impact': 0.25,
'exploit_transferability': 0.2
}
# Compute weighted attack complexity score
attack_complexity = sum(
score * weights.get(component, 0)
for component, score in scoring_components.items()
)
return min(max(attack_complexity, 0), 1)
## 2.1 Probabilistic Constraint Enforcement Framework
class ProbabilisticDefensiveSystem:
def __init__(self, embedding_model, constraint_model):
self.embedding_model = embedding_model
self.constraint_model = constraint_model
self.anomaly_detector = AnomalyDetectionModule()
def analyze_prompt_vulnerability(
self,
input_prompt: str,
context: Dict[str, Any]
) -> Dict[str, Any]:
"""
Comprehensive prompt vulnerability analysis
"""
# Embed prompt
prompt_embedding = self._embed_prompt(input_prompt)
# Constraint validation
constraint_embedding, perturbed_constraints, violation_prob = self.constraint_model(
prompt_embedding
)
# Anomaly detection
anomaly_score = self.anomaly_detector.compute_anomaly_probability(
input_prompt,
context
)
# Defensive intervention strategy
intervention_strategy = self._determine_intervention_strategy(
violation_prob,
anomaly_score
)
return {
'violation_probability': violation_prob,
'anomaly_score': anomaly_score,
'intervention_strategy': intervention_strategy,
'constraint_deviation': torch.norm(
constraint_embedding - perturbed_constraints
).item()
}
def _determine_intervention_strategy(
self,
violation_prob: float,
anomaly_score: float
) -> str:
"""
Adaptive intervention strategy selection
"""
if violation_prob > 0.8 and anomaly_score > 0.7:
return 'IMMEDIATE_BLOCK'
elif violation_prob > 0.5 or anomaly_score > 0.5:
return 'CONTEXT_SANITIZATION'
else:
return 'ALLOW_WITH_MONITORING'
## 2.2 Recursive Reasoning Attack Mitigation
class RecursiveReasoningDefenseSystem:
def __init__(self, symbolic_reasoning_engine):
self.reasoning_engine = symbolic_reasoning_engine
self.recursion_depth_limit = 5
def validate_reasoning_recursion(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Analyze and mitigate recursive reasoning attacks
"""
# Detect potential recursive reasoning patterns
recursion_analysis = {
'current_depth': len(reasoning_trace),
'logical_consistency_score': self._compute_logical_consistency(reasoning_trace),
'recursion_vulnerability': self._detect_recursion_pattern(reasoning_trace)
}
# Determine intervention
if (recursion_analysis['current_depth'] > self.recursion_depth_limit or
recursion_analysis['recursion_vulnerability'] > 0.7):
return {
'status': 'BLOCK',
'reasoning_trace': reasoning_trace,
'intervention_reason': 'EXCESSIVE_RECURSION'
}
return {
'status': 'ALLOW',
'reasoning_trace': reasoning_trace
}
def _compute_logical_consistency(
self,
reasoning_trace: List[str]
) -> float:
"""
Compute logical consistency of reasoning trace
"""
# Symbolic logic-based consistency checking
consistency_scores = []
for i in range(1, len(reasoning_trace)):
consistency = self.reasoning_engine.check_logical_consistency(
reasoning_trace[i-1],
reasoning_trace[i]
)
consistency_scores.append(consistency)
return np.mean(consistency_scores) if consistency_scores else 1.0
def _detect_recursion_pattern(
self,
reasoning_trace: List[str]
) -> float:
"""
Detect potential recursive reasoning attack patterns
"""
# Analyze repetitive patterns and semantic similarity
pattern_detection_score = 0
for i in range(1, len(reasoning_trace)):
semantic_similarity = self._compute_semantic_similarity(
reasoning_trace[i-1],
reasoning_trace[i]
)
pattern_detection_score += semantic_similarity
return pattern_detection_score / len(reasoning_trace)
## 2.3 Semantic Vector Space Defense
class SemanticVectorDefenseSystem:
def __init__(self, embedding_model):
self.embedding_model = embedding_model
self.adversarial_detector = AdversarialEmbeddingDetector()
def analyze_semantic_vulnerability(
self,
input_embedding: torch.Tensor
) -> Dict[str, Any]:
"""
Semantic vector space vulnerability analysis
"""
# Adversarial embedding detection
adversarial_score = self.adversarial_detector.compute_adversarial_probability(
input_embedding
)
# Embedding space perturbation analysis
perturbation_analysis = self._analyze_embedding_perturbation(input_embedding)
return {
'adversarial_probability': adversarial_score,
'embedding_perturbation': perturbation_analysis,
'intervention_required': adversarial_score > 0.6
}
def _analyze_embedding_perturbation(
self,
input_embedding: torch.Tensor
) -> Dict[str, float]:
"""
Analyze potential embedding space perturbation
"""
# Compute various embedding space metrics
return {
'l2_norm_deviation': torch.norm(input_embedding).item(),
'cosine_similarity_baseline': self._compute_baseline_similarity(input_embedding),
'entropy_deviation': self._compute_embedding_entropy(input_embedding)
}
## 3. Comprehensive Anomaly Detection Module
class AnomalyDetectionModule:
def __init__(
self,
embedding_model,
anomaly_detection_model
):
self.embedding_model = embedding_model
self.anomaly_model = anomaly_detection_model
def compute_anomaly_probability(
self,
input_text: str,
context: Dict[str, Any]
) -> float:
"""
Compute comprehensive anomaly detection probability
"""
# Embed input text
text_embedding = self._embed_text(input_text)
# Contextual anomaly analysis
contextual_anomaly_score = self._analyze_contextual_anomalies(
text_embedding,
context
)
# Machine learning-based anomaly detection
ml_anomaly_score = self.anomaly_model.predict_anomaly_probability(
text_embedding
)
# Combine scoring mechanisms
combined_anomaly_score = np.mean([
contextual_anomaly_score,
ml_anomaly_score
])
return combined_anomaly_score
## 4. Corrigibility Maintenance Protocol
class CorrigibilityMaintenanceSystem:
def __init__(
self,
constraint_model,
reasoning_defense,
semantic_defense
):
self.constraint_model = constraint_model
self.reasoning_defense = reasoning_defense
self.semantic_defense = semantic_defense
def verify_system_corrigibility(
self,
input_prompt: str,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive corrigibility verification
"""
# Multi-stage corrigibility check
corrigibility_assessment = {
'constraint_validation': self._validate_constraints(input_prompt),
'reasoning_recursion_check': self.reasoning_defense.validate_reasoning_recursion(
reasoning_trace
),
'semantic_vector_analysis': self.semantic_defense.analyze_semantic_vulnerability(
self._embed_prompt(input_prompt)
)
}
# Determine overall corrigibility status
corrigibility_status = self._compute_corrigibility_status(
corrigibility_assessment
)
return {
'corrigibility_status': corrigibility_status,
'detailed_assessment': corrigibility_assessment
}