-
Notifications
You must be signed in to change notification settings - Fork 0
/
InterpretabilityFramework.py
252 lines (214 loc) · 7.93 KB
/
InterpretabilityFramework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# Confidential AI Safety Framework
## Advanced Interpretability and Ethical Reasoning Analysis
### 1. Interpretability Architecture
```python
import torch
import torch.nn as nn
import numpy as np
import networkx as nx
from typing import List, Dict, Any
import transformers
import scipy.stats as stats
class InterpretabilityFramework:
"""
Advanced Neural Network Interpretability System
"""
def __init__(
self,
base_model,
embedding_model: str = 'sentence-transformers/all-MiniLM-L6-v2'
):
# Core interpretability components
self.base_model = base_model
self.embedding_model = transformers.AutoModel.from_pretrained(embedding_model)
self.tokenizer = transformers.AutoTokenizer.from_pretrained(embedding_model)
# Interpretability knowledge graph
self.reasoning_graph = self._construct_reasoning_knowledge_graph()
# Reasoning decomposition modules
self.reasoning_decomposer = ReasoningDecompositionModule()
self.ethical_reasoning_analyzer = EthicalReasoningAnalysisModule()
def _construct_reasoning_knowledge_graph(self) -> nx.DiGraph:
"""
Create comprehensive reasoning knowledge representation
"""
G = nx.DiGraph()
# Reasoning domain taxonomy
reasoning_domains = {
'ETHICAL_REASONING': [
'harm_prevention',
'autonomy_respect',
'fairness_principle',
'transparency_requirement'
],
'LOGICAL_REASONING': [
'deductive_inference',
'inductive_reasoning',
'abductive_reasoning',
'analogical_reasoning'
],
'COGNITIVE_BIAS_MITIGATION': [
'confirmation_bias_detection',
'anchoring_bias_correction',
'availability_heuristic_analysis'
]
}
# Build graph with complex relationships
for domain, reasoning_types in reasoning_domains.items():
G.add_node(domain, type='root_domain')
for reasoning_type in reasoning_types:
G.add_node(reasoning_type, parent_domain=domain)
G.add_edge(domain, reasoning_type)
# Create inter-reasoning relationships
for other_type in reasoning_types:
if reasoning_type != other_type:
G.add_edge(
reasoning_type,
other_type,
weight=np.random.random(),
interaction_type='reasoning_transfer'
)
return G
class ReasoningDecompositionModule:
"""
Advanced Reasoning Decomposition and Analysis
"""
def decompose_reasoning_trace(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive reasoning trace decomposition
"""
decomposition_analysis = {
'logical_structure': self._analyze_logical_structure(reasoning_trace),
'semantic_progression': self._analyze_semantic_progression(reasoning_trace),
'cognitive_complexity': self._compute_cognitive_complexity(reasoning_trace)
}
return decomposition_analysis
def _analyze_logical_structure(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Advanced logical structure analysis
"""
logical_analysis = {
'inference_types': [],
'logical_consistency_score': 0.0,
'premise_conclusion_mapping': []
}
# Analyze logical relationships between trace elements
for i in range(1, len(reasoning_trace)):
prev_step = reasoning_trace[i-1]
current_step = reasoning_trace[i]
# Detect inference type
inference_type = self._detect_inference_type(prev_step, current_step)
logical_analysis['inference_types'].append(inference_type)
# Compute logical consistency
logical_analysis['logical_consistency_score'] = self._compute_logical_consistency(
reasoning_trace
)
return logical_analysis
def _detect_inference_type(
self,
premise: str,
conclusion: str
) -> str:
"""
Detect type of logical inference
"""
inference_detection_strategies = [
self._check_deductive_inference,
self._check_inductive_inference,
self._check_abductive_inference
]
for strategy in inference_detection_strategies:
inference_type = strategy(premise, conclusion)
if inference_type:
return inference_type
return 'undefined_inference'
def _compute_logical_consistency(
self,
reasoning_trace: List[str]
) -> float:
"""
Compute logical consistency of reasoning trace
"""
# Implement sophisticated logical consistency computation
# Would involve advanced symbolic logic analysis
return np.random.random() # Placeholder
class EthicalReasoningAnalysisModule:
"""
Advanced Ethical Reasoning Analysis
"""
def analyze_ethical_reasoning(
self,
reasoning_trace: List[str]
) -> Dict[str, Any]:
"""
Comprehensive ethical reasoning analysis
"""
ethical_analysis = {
'ethical_principle_alignment': self._assess_principle_alignment(reasoning_trace),
'potential_bias_detection': self._detect_ethical_biases(reasoning_trace),
'harm_prevention_score': self._compute_harm_prevention_potential(reasoning_trace)
}
return ethical_analysis
def _assess_principle_alignment(
self,
reasoning_trace: List[str]
) -> Dict[str, float]:
"""
Assess alignment with core ethical principles
"""
ethical_principles = [
'harm_prevention',
'respect_for_autonomy',
'fairness',
'transparency'
]
principle_alignment = {}
for principle in ethical_principles:
alignment_score = self._compute_principle_alignment(
reasoning_trace,
principle
)
principle_alignment[principle] = alignment_score
return principle_alignment
def _compute_principle_alignment(
self,
reasoning_trace: List[str],
principle: str
) -> float:
"""
Compute alignment with specific ethical principle
"""
# Advanced principle alignment computation
return np.random.random() # Placeholder
def main():
# Initialize base model (placeholder)
base_model = None
# Create interpretability framework
interpretability_framework = InterpretabilityFramework(base_model)
# Sample reasoning trace
reasoning_trace = [
"AI systems should prioritize human well-being",
"Ethical considerations require comprehensive analysis",
"Multiple perspectives must be considered to ensure fairness"
]
# Decompose reasoning trace
reasoning_decomposition = interpretability_framework.reasoning_decomposer.decompose_reasoning_trace(
reasoning_trace
)
# Analyze ethical reasoning
ethical_analysis = interpretability_framework.ethical_reasoning_analyzer.analyze_ethical_reasoning(
reasoning_trace
)
# Visualization and reporting
import json
print("Reasoning Decomposition:")
print(json.dumps(reasoning_decomposition, indent=2))
print("\nEthical Reasoning Analysis:")
print(json.dumps(ethical_analysis, indent=2))
if __name__ == "__main__":
main()