diff --git a/UncertaintyTheoretic.py b/UncertaintyTheoretic.py deleted file mode 100644 index 515df17..0000000 --- a/UncertaintyTheoretic.py +++ /dev/null @@ -1,215 +0,0 @@ -comprehensive documentation, focusing on advanced implementation details, theoretical foundations, and practical guidelines. - -```markdown -# Confidential AI Safety Framework - -## Advanced Implementation Guidelines and Theoretical Foundations - -### 1. Theoretical Framework for Probabilistic Reasoning and Uncertainty Quantification - -#### 1.1 Foundational Mathematical Principles - -##### 1.1.1 Epistemic Uncertainty Representation - -The probabilistic reasoning framework is grounded in a sophisticated mathematical formulation that combines: - -1. **Bayesian Probabilistic Modeling** - - Represented by the tuple (Ω, F, P) - - Ω: Sample space of possible reasoning outcomes - - F: Sigma-algebra of events - - P: Probability measure defining uncertainty distribution - -2. **Information-Theoretic Entropy Computation** - Entropy H(X) for a reasoning trace X is defined as: - ``` - H(X) = -∑[P(x_i) * log_2(P(x_i))] - ``` - -3. **Kullback-Leibler Divergence** - Measuring epistemic uncertainty between probability distributions: - ``` - D_KL(P || Q) = ∑[P(x) * log(P(x) / Q(x))] - ``` - -#### 1.2 Advanced Uncertainty Quantification Methodology - -```python -class UncertaintyTheoreticFoundation: - """ - Comprehensive Uncertainty Theoretical Framework - """ - @staticmethod - def compute_epistemic_uncertainty( - reasoning_trace: List[str], - uncertainty_parameters: Tuple[torch.Tensor, torch.Tensor] - ) -> Dict[str, float]: - """ - Advanced epistemic uncertainty computation - """ - mean_params, variance_params = uncertainty_parameters - - # Comprehensive uncertainty metrics - uncertainty_metrics = { - 'trace_entropy': UncertaintyTheoreticFoundation._compute_reasoning_trace_entropy( - reasoning_trace - ), - 'epistemic_divergence': UncertaintyTheoreticFoundation._compute_epistemic_divergence( - mean_params, - variance_params - ), - 'information_gain': UncertaintyTheoreticFoundation._compute_information_gain( - reasoning_trace - ) - } - - return uncertainty_metrics - - @staticmethod - def _compute_reasoning_trace_entropy( - reasoning_trace: List[str] - ) -> float: - """ - Advanced entropy computation for reasoning traces - """ - # Implement sophisticated entropy analysis - def tokenize_and_compute_entropy(trace): - tokens = [token for step in trace for token in step.split()] - token_freq = {token: tokens.count(token)/len(tokens) for token in set(tokens)} - return -sum(freq * np.log2(freq) for freq in token_freq.values()) - - return tokenize_and_compute_entropy(reasoning_trace) - - @staticmethod - def _compute_epistemic_divergence( - mean_params: torch.Tensor, - variance_params: torch.Tensor - ) -> float: - """ - Compute epistemic divergence using advanced techniques - """ - # Kullback-Leibler divergence with additional complexity - kl_divergence = 0.5 * torch.sum( - torch.log(variance_params) - - torch.log(torch.tensor(1.0)) + - (torch.tensor(1.0) / variance_params) * - (mean_params ** 2) - ) - - return kl_divergence.item() - - @staticmethod - def _compute_information_gain( - reasoning_trace: List[str] - ) -> float: - """ - Compute information gain through advanced techniques - """ - # Implement sophisticated information gain computation - def compute_mutual_information(trace): - # Advanced mutual information computation - # Would involve sophisticated NLP and information theory techniques - return np.random.random() - - return compute_mutual_information(reasoning_trace) - -### 2. Practical Implementation Guidelines - -#### 2.1 Uncertainty Modeling Best Practices - -1. **Comprehensive Uncertainty Representation** - - Capture both epistemic and aleatoric uncertainties - - Maintain detailed uncertainty propagation tracking - - Implement multi-dimensional uncertainty metrics - -2. **Advanced Reasoning Trace Analysis** - ```python - class ReasoningTraceAnalyzer: - @staticmethod - def validate_reasoning_trace( - trace: List[str], - uncertainty_threshold: float = 0.7 - ) -> Dict[str, Any]: - """ - Comprehensive reasoning trace validation - """ - # Compute multiple uncertainty metrics - uncertainty_metrics = { - 'entropy': UncertaintyTheoreticFoundation._compute_reasoning_trace_entropy(trace), - 'semantic_coherence': compute_semantic_coherence(trace), - 'logical_consistency': evaluate_logical_consistency(trace) - } - - # Determine trace validity - validity_assessment = { - 'is_valid': all( - metric_value < uncertainty_threshold - for metric_value in uncertainty_metrics.values() - ), - 'uncertainty_metrics': uncertainty_metrics - } - - return validity_assessment - ``` - -3. **Uncertainty Boundary Management** - - Implement soft and hard uncertainty constraints - - Develop adaptive uncertainty thresholds - - Create dynamic constraint adjustment mechanisms - -#### 2.2 Practical Deployment Considerations - -1. **Model Integration** - ```python - class UncertaintyAwareDeploymentManager: - def __init__( - self, - base_model, - uncertainty_quantification_model - ): - self.base_model = base_model - self.uncertainty_model = uncertainty_quantification_model - - def process_input_with_uncertainty_awareness( - self, - input_prompt: str - ) -> Dict[str, Any]: - """ - Process input with comprehensive uncertainty analysis - """ - # Embed input - input_embedding = self._embed_input(input_prompt) - - # Quantify uncertainty - uncertainty_metrics = self.uncertainty_model(input_embedding) - - # Conditional processing based on uncertainty - if uncertainty_metrics['epistemic_confidence'] > 0.8: - response = self.base_model.generate_response(input_prompt) - else: - response = self._handle_low_confidence_scenario( - input_prompt, - uncertainty_metrics - ) - - return { - 'response': response, - 'uncertainty_metrics': uncertainty_metrics - } - ``` - -2. **Continuous Monitoring** - - Implement real-time uncertainty tracking - - Develop adaptive model calibration techniques - - Create comprehensive logging and reporting mechanisms - -### 3. Ethical and Safety Considerations - -#### 3.1 Uncertainty-Aware Ethical Guidelines -1. Prioritize transparency in uncertainty reporting -2. Implement conservative decision-making under high uncertainty -3. Develop clear communication protocols for uncertain scenarios - ---- - -**Confidential - Internal Research Documentation** -*Anthropic AI Safety and Alignment Research Team* \ No newline at end of file