-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathlayers.py
154 lines (114 loc) · 4.16 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from inits import *
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from config import args
# global unique layer ID dictionary for layer name assignment
_LAYER_UIDS = {}
def get_layer_uid(layer_name=''):
"""Helper function, assigns unique layer IDs."""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def sparse_dropout(x, rate, noise_shape):
"""
Dropout for sparse tensors.
"""
random_tensor = 1 - rate
random_tensor += tf.random.uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool)
pre_out = tf.sparse.retain(x, dropout_mask)
return pre_out * (1./(1 - rate))
def dot(x, y, sparse=False):
"""
Wrapper for tf.matmul (sparse vs dense).
"""
if sparse:
res = tf.sparse.sparse_dense_matmul(x, y)
else:
res = tf.matmul(x, y)
return res
class Dense(layers.Layer):
"""Dense layer."""
def __init__(self, input_dim, output_dim, placeholders, dropout=0., sparse_inputs=False,
act=tf.nn.relu, bias=False, featureless=False, **kwargs):
super(Dense, self).__init__(**kwargs)
if dropout:
self.dropout = placeholders['dropout']
else:
self.dropout = 0.
self.act = act
self.sparse_inputs = sparse_inputs
self.featureless = featureless
self.bias = bias
# helper variable for sparse dropout
self.num_features_nonzero = placeholders['num_features_nonzero']
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = glorot([input_dim, output_dim],
name='weights')
if self.bias:
self.vars['bias'] = zeros([output_dim], name='bias')
if self.logging:
self._log_vars()
def _call(self, inputs):
x = inputs
# dropout
if self.sparse_inputs:
x = sparse_dropout(x, 1-self.dropout, self.num_features_nonzero)
else:
x = tf.nn.dropout(x, 1-self.dropout)
# transform
output = dot(x, self.vars['weights'], sparse=self.sparse_inputs)
# bias
if self.bias:
output += self.vars['bias']
return self.act(output)
class GraphConvolution(layers.Layer):
"""
Graph convolution layer.
"""
def __init__(self, input_dim, output_dim, num_features_nonzero,
dropout=0.,
is_sparse_inputs=False,
activation=tf.nn.relu,
bias=False,
featureless=False, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
self.dropout = dropout
self.activation = activation
self.is_sparse_inputs = is_sparse_inputs
self.featureless = featureless
self.bias = bias
self.num_features_nonzero = num_features_nonzero
self.weights_ = []
for i in range(1):
w = self.add_variable('weight' + str(i), [input_dim, output_dim])
self.weights_.append(w)
if self.bias:
self.bias = self.add_variable('bias', [output_dim])
# for p in self.trainable_variables:
# print(p.name, p.shape)
def call(self, inputs, training=None):
x, support_ = inputs
# dropout
if training is not False and self.is_sparse_inputs:
x = sparse_dropout(x, self.dropout, self.num_features_nonzero)
elif training is not False:
x = tf.nn.dropout(x, self.dropout)
# convolve
supports = list()
for i in range(len(support_)):
if not self.featureless: # if it has features x
pre_sup = dot(x, self.weights_[i], sparse=self.is_sparse_inputs)
else:
pre_sup = self.weights_[i]
support = dot(support_[i], pre_sup, sparse=True)
supports.append(support)
output = tf.add_n(supports)
# bias
if self.bias:
output += self.bias
return self.activation(output)