-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathargs_fusion.py
34 lines (24 loc) · 1.09 KB
/
args_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
class args():
# training args
epochs = 4 #"number of training epochs, default is 2"
batch_size = 4 #"batch size for training, default is 4"
dataset = "/data/Disk_B/datasets/imagefusion/MSCOCO2014"
HEIGHT = 224
WIDTH = 224
save_model_dir = "models/model_SFPFusion" #"path to folder where trained model will be saved."
save_loss_dir = "models/loss" # "path to folder where trained model will be saved."
image_size = 224 #"size of training images, default is 256 X 256"
cuda = 1 #"set it to 1 for running on GPU, 0 for CPU"
seed = 42 #"random seed for training"
ssim_weight = [1,10,100,1000,10000]
ssim_path = ['1e0', '1e1', '1e2', '1e3', '1e4']
lr = 1e-3 #"learning rate, default is 0.001"
lr_light = 1e-3 # "learning rate, default is 0.001"
log_interval = 5 #"number of images after which the training loss is logged, default is 500"
resume = None
resume_auto_en = None
resume_auto_de = None
resume_auto_fn = None
# for test Final_cat_epoch_9_Wed_Jan__9_04_16_28_2019_1.0_1.0.model
model_path_gray = "./models/densefuse_gray.model"
model_path_rgb = "./models/densefuse_rgb.model"