-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest_SFPFusion.py
215 lines (170 loc) · 7.84 KB
/
test_SFPFusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""测试融合网络"""
import argparse
import os
import random
import numpy as np
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from data_loader.msrs_data import MSRS_data
from data_loader.common import YCrCb2RGB, clamp
from data_loader.fusion_strategy import L1_Norm
from model_SFPFusion import MODEL, WaveDecoder
from torchvision import transforms
import torch
from time import time
torch.cuda.set_device(1)
def init_seeds(seed=0):
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
# cudnn seed 0 settings are slower and more reproducible, else faster and less reproducible
import torch.backends.cudnn as cudnn
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if args.cuda:
torch.cuda.manual_seed(seed)
cudnn.benchmark, cudnn.deterministic = (False, True) if seed == 0 else (True, False)
class WCT2:
def __init__(self, option_unpool='sum', verbose=True):
self.verbose = verbose
self.encoder = MODEL(embed_dim=[64, 128, 320, 512], # 25M, 4.4G, 677FPS
depths=[3, 5, 9, 3],
num_heads=[1, 2, 5, 8],
n_iter=[1, 1, 1, 1],
stoken_size=[8, 4, 1, 1],
projection=1024,
mlp_ratio=4,
stoken_refine=True,
stoken_refine_attention=True,
hard_label=False,
rpe=False,
qkv_bias=True,
qk_scale=None,
use_checkpoint=False,
checkpoint_num=[0, 0, 0, 0],
layerscale=[False] * 4,
init_values=1e-6,option_unpool='sum').cuda()
self.decoder = WaveDecoder(option_unpool).cuda()
self.encoder.load_state_dict(torch.load('models/model_SFPFusion/1e1/Final_Encoder_epoch.model',
map_location=torch.device('cpu')))
self.decoder.load_state_dict(torch.load('models/model_SFPFusion/1e1/Final_Decoder_epoch.model',
map_location=torch.device('cpu')))
# print(self.encoder)
# total = sum([params.nelement() for params in self.encoder.parameters()])
# print("Number of params Encoder: {%.2f M}" % (total / 1e6))
#
# total = sum([params.nelement() for params in self.decoder.parameters()])
# print("Number of params Encoder: {%.2f M}" % (total / 1e6))
self.encoder.eval()
self.decoder.eval()
def print_(self, msg):
if self.verbose:
print(msg)
def encode(self, x, skips, level):
return self.encoder.encode(x, skips, level)
def decode(self, x, skips, level):
return self.decoder.decode(x, skips, level)
def get_all_feature(self, ir_image,vis_y_image):
skips = {}
ir_skips={}
vis_y_skips={}
feats={'encoder': {}, 'decoder': {}}
ir_feats = {'encoder': {}, 'decoder': {}}
vis_y_feats = {'encoder': {}, 'decoder': {}}
for level in [1, 2, 3, 4]:
ir_image = self.encode(ir_image, ir_skips, level)
vis_y_image = self.encode(vis_y_image, vis_y_skips, level)
from torchvision import transforms
#weighted maps generated
# fusion = torch.sum(vis_y_image,dim=0)
# fusion = torch.sum(fusion, dim=0)
# fusion = fusion/vis_y_image.size()[1]
# rgb_fused_image = transforms.ToPILImage()(fusion)
# rgb_fused_image.save('weight/1.png')
ir_feats['encoder'][level] = ir_image
vis_y_feats['encoder'][level] = vis_y_image
return skips,ir_skips,vis_y_skips,ir_feats,vis_y_feats
def transfer(self, vis_y_image, ir_image):
skips, ir_skips, vis_y_skips, ir_feats, vis_y_feats = self.get_all_feature(ir_image, vis_y_image)
fusion_feat = {'encoder': {}, 'decoder': {}}
fusion_skips = {}
wct_skips=[1,2,3]
wct2_skip_level = ['pool1', 'pool2', 'pool3']
fusion_skips['pool1'] = [0, 0, 0]
fusion_skips['pool2'] = [0, 0, 0]
fusion_skips['pool3'] = [0, 0, 0]
fusion = torch.tensor(1)
for level in [1, 2, 3, 4]:
fusion_feat['encoder'][level] = L1_Norm(torch.abs(vis_y_feats['encoder'][level]),
torch.abs(ir_feats['encoder'][level]))
if level in wct_skips:
skip_level = wct2_skip_level[level-1]
for component in [0, 1, 2]: # component: [VD, HD, DD]
fusion_skips[skip_level][component] = (ir_skips[skip_level][component] +
vis_y_skips[skip_level][component])
for level in [4, 3, 2, 1]:
if level == 4:
fusion = self.decode(fusion_feat['encoder'][level], fusion_skips, level)
if level == 3:
fusion = self.decode(fusion, fusion_skips, level)
if level == 2:
fusion = self.decode(fusion, fusion_skips, level)
if level == 1:
fusion = self.decode(fusion, fusion_skips, level)
return fusion
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch PIAFusion')
parser.add_argument('--dataset_path', metavar='DIR', default='test_data/MSRS/',
help='path to dataset (default: imagenet)')# 测试数据存放位置
parser.add_argument('-a', '--arch', metavar='ARCH', default='fusion_model', choices=['fusion_model'])
parser.add_argument('--save_path', default='results/SFPFusion-MSRS')# 融合结果存放位置
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--seed', default=0, type=int,
help='seed for initializing training. ')
parser.add_argument('--cuda', default=True, type=bool,
help='use GPU or not.')
args = parser.parse_args()
# init_seeds(args.seed)
test_dataset = MSRS_data(args.dataset_path)
test_loader = DataLoader(
test_dataset, batch_size=1, shuffle=False,
num_workers=args.workers, pin_memory=True)
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
# 如果是融合网络
if args.arch == 'fusion_model':
test_tqdm = tqdm(test_loader, total=len(test_loader))
list_no=[]
with torch.no_grad():
wct2 = WCT2()
sum=0
for vis_image, vis_y_image, vis_cb_image, vis_cr_image, inf_image, name,image_size in test_tqdm:
vis_image = vis_image.cuda()
vis_y_image = vis_y_image.cuda()
cb = vis_cb_image.cuda()
cr = vis_cr_image.cuda()
inf_image = inf_image.cuda()
# try:
start_time = time()
fused_image = wct2.transfer(vis_y_image,inf_image)
end_time = time()
elapsed = end_time - start_time
sum+=elapsed
print(name[0],elapsed)
fused_image = clamp(fused_image[0][0])
# fused_image = clamp(fused_image[0][0]).cpu()
# pred = torch.squeeze(fused_image).numpy()
# pred_mask = np.where(fused_image > 0.5, 1, 0)
# import imageio
# imageio.imsave(f'{args.save_path}/{name[0]}', pred_mask[0])
# 格式转换,因为tensor不能直接保存成图片
# fused_image=fused_image.reshape([])
fused_image = YCrCb2RGB(fused_image, cb[0], cr[0])
fused_image = transforms.ToPILImage()(fused_image)
# fused_image=fused_image.resize((size[0],size[1]),Image.BILINEAR)
fused_image.save(f'{args.save_path}/{name[0]}')
print(sum)
# except:
# list_no.append(name[0].split('.')[0])
# print(list_no)