forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
503 lines (463 loc) · 21.2 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import ast
import csv
import os
from pathlib import Path
import numpy as np
import torch
from utils import (DEFAULT_HF_MODEL_DIRS, DEFAULT_PROMPT_TEMPLATES,
add_common_args, load_tokenizer, read_model_name,
throttle_generator)
import tensorrt_llm
import tensorrt_llm.profiler
from tensorrt_llm.logger import logger
from tensorrt_llm.runtime import PYTHON_BINDINGS, ModelRunner
if PYTHON_BINDINGS:
from tensorrt_llm.runtime import ModelRunnerCpp
def parse_arguments(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--max_input_length', type=int, default=923)
parser.add_argument('--max_output_len', type=int, required=True)
parser.add_argument(
'--input_text',
type=str,
nargs='+',
default=["Born in north-east France, Soyer trained as a"])
parser.add_argument(
'--input_file',
type=str,
help=
'CSV or Numpy file containing tokenized input. Alternative to text input.',
default=None)
parser.add_argument('--output_csv',
type=str,
help='CSV file where the tokenized output is stored.',
default=None)
parser.add_argument('--output_npy',
type=str,
help='Numpy file where the tokenized output is stored.',
default=None)
parser.add_argument(
'--output_logits_npy',
type=str,
help=
'Numpy file where the generation logits are stored. Use only when num_beams==1',
default=None)
parser.add_argument('--output_log_probs_npy',
type=str,
help='Numpy file where the log_probs are stored',
default=None)
parser.add_argument('--output_cum_log_probs_npy',
type=str,
help='Numpy file where the cum_log_probs are stored',
default=None)
parser.add_argument(
'--run_profiling',
default=False,
action='store_true',
help="Run several 10 iterations to profile the inference latencies.")
parser = add_common_args(parser)
return parser.parse_args(args=args)
def parse_input(tokenizer,
input_text=None,
prompt_template=None,
input_file=None,
add_special_tokens=True,
max_input_length=923,
pad_id=None,
num_prepend_vtokens=[],
model_name=None,
model_version=None):
if pad_id is None:
pad_id = tokenizer.pad_token_id
batch_input_ids = []
if input_file is None:
for curr_text in input_text:
if prompt_template is not None:
curr_text = prompt_template.format(input_text=curr_text)
input_ids = tokenizer.encode(curr_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length)
batch_input_ids.append(input_ids)
else:
if input_file.endswith('.csv'):
with open(input_file, 'r') as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for line in csv_reader:
input_ids = np.array(line, dtype='int32')
batch_input_ids.append(input_ids[-max_input_length:])
elif input_file.endswith('.npy'):
inputs = np.load(input_file)
for row in inputs:
input_ids = row[row != pad_id]
batch_input_ids.append(input_ids[-max_input_length:])
elif input_file.endswith('.txt'):
with open(input_file, 'r', encoding='utf-8',
errors='replace') as txt_file:
input_text = txt_file.readlines()
batch_input_ids = tokenizer(
input_text,
add_special_tokens=add_special_tokens,
truncation=True,
max_length=max_input_length)["input_ids"]
else:
print('Input file format not supported.')
raise SystemExit
if num_prepend_vtokens:
assert len(num_prepend_vtokens) == len(batch_input_ids)
base_vocab_size = tokenizer.vocab_size - len(
tokenizer.special_tokens_map.get('additional_special_tokens', []))
for i, length in enumerate(num_prepend_vtokens):
batch_input_ids[i] = list(
range(base_vocab_size,
base_vocab_size + length)) + batch_input_ids[i]
if model_name == 'ChatGLMForCausalLM' and model_version == 'glm':
for ids in batch_input_ids:
ids.append(tokenizer.sop_token_id)
batch_input_ids = [
torch.tensor(x, dtype=torch.int32) for x in batch_input_ids
]
return batch_input_ids
def print_output(tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=None,
output_npy=None,
context_logits=None,
generation_logits=None,
cum_log_probs=None,
log_probs=None,
output_logits_npy=None,
output_cum_log_probs_npy=None,
output_log_probs_npy=None):
batch_size, num_beams, _ = output_ids.size()
if output_csv is None and output_npy is None:
for batch_idx in range(batch_size):
inputs = output_ids[batch_idx][0][:input_lengths[batch_idx]].tolist(
)
input_text = tokenizer.decode(inputs)
print(f'Input [Text {batch_idx}]: \"{input_text}\"')
for beam in range(num_beams):
output_begin = input_lengths[batch_idx]
output_end = sequence_lengths[batch_idx][beam]
outputs = output_ids[batch_idx][beam][
output_begin:output_end].tolist()
output_text = tokenizer.decode(outputs)
print(
f'Output [Text {batch_idx} Beam {beam}]: \"{output_text}\"')
output_ids = output_ids.reshape((-1, output_ids.size(2)))
if output_csv is not None:
output_file = Path(output_csv)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = output_ids.tolist()
with open(output_file, 'w') as csv_file:
writer = csv.writer(csv_file, delimiter=',')
writer.writerows(outputs)
if output_npy is not None:
output_file = Path(output_npy)
output_file.parent.mkdir(exist_ok=True, parents=True)
outputs = np.array(output_ids.cpu().contiguous(), dtype='int32')
np.save(output_file, outputs)
# Save context logits
if context_logits is not None and output_logits_npy is not None:
context_logits = torch.cat(context_logits, axis=0)
vocab_size_padded = context_logits.shape[-1]
context_logits = context_logits.reshape([1, -1, vocab_size_padded])
output_context_logits_npy = output_logits_npy.split(
'.npy')[0] + "_context"
output_context_logits_file = Path(output_context_logits_npy)
context_outputs = np.array(
context_logits.squeeze(0).cpu().contiguous(),
dtype='float32') # [promptLengthSum, vocabSize]
np.save(output_context_logits_file, context_outputs)
# Save generation logits
if generation_logits is not None and output_logits_npy is not None and num_beams == 1:
output_generation_logits_npy = output_logits_npy.split(
'.npy')[0] + "_generation"
output_generation_logits_file = Path(output_generation_logits_npy)
generation_outputs = np.array(generation_logits.cpu().contiguous(),
dtype='float32')
np.save(output_generation_logits_file, generation_outputs)
# Save cum log probs
if cum_log_probs is not None and output_cum_log_probs_npy is not None:
cum_log_probs_file = Path(output_cum_log_probs_npy)
cum_log_probs_outputs = np.array(cum_log_probs.cpu().contiguous(),
dtype='float32')
np.save(cum_log_probs_file, cum_log_probs_outputs)
# Save cum log probs
if log_probs is not None and output_log_probs_npy is not None:
log_probs_file = Path(output_log_probs_npy)
log_probs_outputs = np.array(log_probs.cpu().contiguous(),
dtype='float32')
np.save(log_probs_file, log_probs_outputs)
def main(args):
runtime_rank = tensorrt_llm.mpi_rank()
logger.set_level(args.log_level)
# different handling if encoder-decoder models
is_enc_dec = {
name
for name in os.listdir(args.engine_dir)
if os.path.isdir(os.path.join(args.engine_dir, name))
} == {'encoder', 'decoder'}
if is_enc_dec:
logger.warning(
"This path is an encoder-decoder model. Using different handling.")
assert not args.use_py_session, "Encoder-decoder models don't have a unified python runtime, please use its own examples/enc_dec/run.py instead."
model_name, model_version = read_model_name(
args.engine_dir) if not is_enc_dec else ("", "")
if args.tokenizer_dir is None and model_name in DEFAULT_HF_MODEL_DIRS:
logger.warning(
"tokenizer_dir is not specified. Try to infer from model_name, but this may be incorrect."
)
args.tokenizer_dir = DEFAULT_HF_MODEL_DIRS[model_name]
tokenizer, pad_id, end_id = load_tokenizer(
tokenizer_dir=args.tokenizer_dir,
vocab_file=args.vocab_file,
model_name=model_name,
model_version=model_version,
tokenizer_type=args.tokenizer_type,
)
stop_words_list = None
if args.stop_words:
stop_words_list = tensorrt_llm.runtime.decode_words_list(
args.stop_words, tokenizer)
bad_words_list = None
if args.bad_words:
bad_words_list = tensorrt_llm.runtime.decode_words_list(
args.bad_words, tokenizer)
prompt_template = None
if args.use_prompt_template and model_name in DEFAULT_PROMPT_TEMPLATES:
prompt_template = DEFAULT_PROMPT_TEMPLATES[model_name]
batch_input_ids = parse_input(tokenizer=tokenizer,
input_text=args.input_text,
prompt_template=prompt_template,
input_file=args.input_file,
add_special_tokens=args.add_special_tokens,
max_input_length=args.max_input_length,
pad_id=pad_id,
num_prepend_vtokens=args.num_prepend_vtokens,
model_name=model_name,
model_version=model_version)
if is_enc_dec:
encoder_input_ids = batch_input_ids
decoder_input_ids = [
torch.tensor([pad_id], dtype=torch.int32) for _ in batch_input_ids
] # by default decoder_start_token_id for T5
input_lengths = [x.size(0) for x in decoder_input_ids
] if is_enc_dec else [x.size(0) for x in batch_input_ids]
encoder_input_lengths = [x.size(0)
for x in encoder_input_ids] if is_enc_dec else None
if not PYTHON_BINDINGS and not args.use_py_session:
logger.warning(
"Python bindings of C++ session is unavailable, fallback to Python session."
)
args.use_py_session = True
if args.debug_mode and not args.use_py_session:
logger.warning(
"Debug mode is not supported in C++ session for now, fallback to Python session."
)
args.use_py_session = True
runner_cls = ModelRunner if args.use_py_session else ModelRunnerCpp
runner_kwargs = dict(
engine_dir=args.engine_dir,
lora_dir=args.lora_dir,
rank=runtime_rank,
debug_mode=args.debug_mode,
lora_ckpt_source=args.lora_ckpt_source,
gpu_weights_percent=args.gpu_weights_percent,
)
if not args.use_py_session:
runner_kwargs.update(is_enc_dec=is_enc_dec)
if args.medusa_choices is not None:
args.medusa_choices = ast.literal_eval(args.medusa_choices)
assert args.temperature == 1.0, "Medusa should use temperature == 1.0"
assert args.num_beams == 1, "Medusa should use num_beams == 1"
runner_kwargs.update(medusa_choices=args.medusa_choices)
if not args.use_py_session:
runner_kwargs.update(
max_batch_size=len(batch_input_ids),
max_input_len=max(
encoder_input_lengths if is_enc_dec else input_lengths),
max_output_len=args.max_output_len,
max_beam_width=args.num_beams,
max_attention_window_size=args.max_attention_window_size,
sink_token_length=args.sink_token_length,
max_tokens_in_paged_kv_cache=args.max_tokens_in_paged_kv_cache,
kv_cache_enable_block_reuse=args.kv_cache_enable_block_reuse,
kv_cache_free_gpu_memory_fraction=args.
kv_cache_free_gpu_memory_fraction,
enable_chunked_context=args.enable_chunked_context,
)
runner = runner_cls.from_dir(**runner_kwargs)
with torch.no_grad():
outputs = runner.generate(
batch_input_ids=decoder_input_ids
if is_enc_dec else batch_input_ids,
encoder_input_ids=encoder_input_ids if is_enc_dec else None,
max_new_tokens=args.max_output_len,
max_attention_window_size=args.max_attention_window_size,
sink_token_length=args.sink_token_length,
end_id=end_id,
pad_id=pad_id,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
early_stopping=args.early_stopping,
repetition_penalty=args.repetition_penalty,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
stop_words_list=stop_words_list,
bad_words_list=bad_words_list,
output_cum_log_probs=(args.output_cum_log_probs_npy != None),
output_log_probs=(args.output_log_probs_npy != None),
random_seed=args.random_seed,
lora_uids=args.lora_task_uids,
prompt_table=args.prompt_table_path,
prompt_tasks=args.prompt_tasks,
streaming=args.streaming,
output_sequence_lengths=True,
no_repeat_ngram_size=args.no_repeat_ngram_size,
return_dict=True,
medusa_choices=args.medusa_choices)
torch.cuda.synchronize()
if args.streaming:
for curr_outputs in throttle_generator(outputs,
args.streaming_interval):
if runtime_rank == 0:
output_ids = curr_outputs['output_ids']
sequence_lengths = curr_outputs['sequence_lengths']
cum_log_probs = None
log_probs = None
if args.output_cum_log_probs_npy != None:
cum_log_probs = outputs['cum_log_probs']
if args.output_log_probs_npy != None:
log_probs = outputs['log_probs']
print_output(
tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=args.output_csv,
output_npy=args.output_npy,
cum_log_probs=cum_log_probs,
log_probs=log_probs,
output_cum_log_probs_npy=args.output_cum_log_probs_npy,
output_log_probs_npy=args.output_log_probs_npy)
else:
if runtime_rank == 0:
output_ids = outputs['output_ids']
sequence_lengths = outputs['sequence_lengths']
context_logits = None
generation_logits = None
cum_log_probs = None
log_probs = None
if runner.gather_context_logits:
context_logits = outputs['context_logits']
if runner.gather_generation_logits:
generation_logits = outputs['generation_logits']
if args.output_cum_log_probs_npy != None:
cum_log_probs = outputs['cum_log_probs']
if args.output_log_probs_npy != None:
log_probs = outputs['log_probs']
print_output(tokenizer,
output_ids,
input_lengths,
sequence_lengths,
output_csv=args.output_csv,
output_npy=args.output_npy,
context_logits=context_logits,
generation_logits=generation_logits,
output_logits_npy=args.output_logits_npy,
cum_log_probs=cum_log_probs,
log_probs=log_probs,
output_cum_log_probs_npy=args.output_cum_log_probs_npy,
output_log_probs_npy=args.output_log_probs_npy)
if args.run_profiling:
ite = 10
# warmup
for _ in range(ite):
with torch.no_grad():
outputs = runner.generate(
batch_input_ids,
max_new_tokens=args.max_output_len,
max_attention_window_size=args.max_attention_window_size,
end_id=end_id,
pad_id=pad_id,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
early_stopping=args.early_stopping,
repetition_penalty=args.repetition_penalty,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
stop_words_list=stop_words_list,
bad_words_list=bad_words_list,
output_cum_log_probs=(args.output_cum_log_probs_npy !=
None),
output_log_probs=(args.output_log_probs_npy != None),
random_seed=args.random_seed,
lora_uids=args.lora_task_uids,
prompt_table=args.prompt_table_path,
prompt_tasks=args.prompt_tasks,
streaming=args.streaming,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
tensorrt_llm.profiler.start("tmp")
for _ in range(ite):
with torch.no_grad():
outputs = runner.generate(
batch_input_ids,
max_new_tokens=args.max_output_len,
max_attention_window_size=args.max_attention_window_size,
end_id=end_id,
pad_id=pad_id,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
num_beams=args.num_beams,
length_penalty=args.length_penalty,
early_stopping=args.early_stopping,
repetition_penalty=args.repetition_penalty,
presence_penalty=args.presence_penalty,
frequency_penalty=args.frequency_penalty,
stop_words_list=stop_words_list,
bad_words_list=bad_words_list,
output_cum_log_probs=(args.output_cum_log_probs_npy !=
None),
output_log_probs=(args.output_log_probs_npy != None),
random_seed=args.random_seed,
lora_uids=args.lora_task_uids,
prompt_table=args.prompt_table_path,
prompt_tasks=args.prompt_tasks,
streaming=args.streaming,
output_sequence_lengths=True,
return_dict=True)
torch.cuda.synchronize()
tensorrt_llm.profiler.stop("tmp")
print(
f"batch_size: {len(batch_input_ids)}, avg latency of {ite} iterations: : {tensorrt_llm.profiler.elapsed_time_in_sec('tmp') / ite} sec"
)
if __name__ == '__main__':
args = parse_arguments()
main(args)