-
Notifications
You must be signed in to change notification settings - Fork 35
/
AkshitGulyan_AIML_KNN.py
133 lines (56 loc) · 1.88 KB
/
AkshitGulyan_AIML_KNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python
# coding: utf-8
# In[29]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# In[30]:
data=pd.read_csv(r"C:\Users\akshi\Downloads\DSDL\heart.csv")
# In[31]:
data.head()
# In[32]:
data.info()
# In[33]:
x=data[['Age','Sex','ChestPainType','RestingBP','Cholesterol','FastingBS','RestingECG','MaxHR','ExerciseAngina','Oldpeak','ST_Slope']]
# In[34]:
y=data['HeartDisease']
# In[59]:
x=pd.get_dummies(data,columns=(['Age','Sex','ChestPainType','RestingBP','Cholesterol','FastingBS','RestingECG','MaxHR','ExerciseAngina','Oldpeak','ST_Slope']))
# In[60]:
from sklearn.preprocessing import LabelEncoder
# In[61]:
le=LabelEncoder()
# In[62]:
data.Age=le.fit_transform(data.Age)
data.Sex=le.fit_transform(data.Sex)
data.ChestPainType=le.fit_transform(data.ChestPainType)
data.RestingBP=le.fit_transform(data.RestingBP)
data.Cholesterol=le.fit_transform(data.Cholesterol)
data.FastingBS=le.fit_transform(data.FastingBS)
data.RestingECG=le.fit_transform(data.RestingECG)
data.MaxHR=le.fit_transform(data.MaxHR)
data.ExerciseAngina=le.fit_transform(data.ExerciseAngina)
data.Oldpeak=le.fit_transform(data.Oldpeak)
data.ST_Slope=le.fit_transform(data.ST_Slope)
# In[63]:
data.HeartDisease=le.fit_transform(data.HeartDisease)
# In[64]:
from sklearn.model_selection import train_test_split
# In[65]:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.30,random_state=1)
# In[66]:
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 5, metric = 'minkowski', p = 2)
classifier.fit(x_train, y_train)
# In[67]:
y_pred = classifier.predict(x_test)
# In[68]:
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
# In[69]:
print(cm)
# In[70]:
print(ac)
# In[ ]: