-
Notifications
You must be signed in to change notification settings - Fork 35
/
AkshitGulyan_AIML_LogisticRegression.py
150 lines (62 loc) · 1.84 KB
/
AkshitGulyan_AIML_LogisticRegression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# In[2]:
data=pd.read_csv(r"C:\Users\akshi\Downloads\DSDL\heart.csv")
# In[3]:
data.head()
# In[4]:
data.info()
# In[5]:
x=data[['Age','Sex','ChestPainType','RestingBP','Cholesterol','FastingBS','RestingECG','MaxHR','ExerciseAngina','Oldpeak','ST_Slope']]
# In[6]:
y=data['HeartDisease']
# In[7]:
x=pd.get_dummies(data,columns=(['Sex','ChestPainType','RestingECG','ExerciseAngina','ST_Slope']))
# In[22]:
x.head()
# In[8]:
from sklearn.linear_model import LogisticRegression
# In[9]:
from sklearn.preprocessing import LabelEncoder
# In[10]:
le=LabelEncoder()
# In[11]:
data.Age=le.fit_transform(data.Age)
data.Sex=le.fit_transform(data.Sex)
data.ChestPainType=le.fit_transform(data.ChestPainType)
data.RestingBP=le.fit_transform(data.RestingBP)
data.Cholesterol=le.fit_transform(data.Cholesterol)
data.FastingBS=le.fit_transform(data.FastingBS)
data.RestingECG=le.fit_transform(data.RestingECG)
data.MaxHR=le.fit_transform(data.MaxHR)
data.ExerciseAngina=le.fit_transform(data.ExerciseAngina)
data.Oldpeak=le.fit_transform(data.Oldpeak)
data.ST_Slope=le.fit_transform(data.ST_Slope)
# In[12]:
data.HeartDisease=le.fit_transform(data.HeartDisease)
# In[13]:
data.head()
# In[14]:
from sklearn.model_selection import train_test_split
# In[15]:
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25,random_state=1)
# In[16]:
lr=LogisticRegression()
# In[17]:
lr.fit(x_train,y_train)
# In[18]:
y_pred = lr.predict(x_test)
# In[19]:
print(lr.coef_)
print(lr.intercept_)
# In[20]:
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test, y_pred)
# In[21]:
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred)