-
Notifications
You must be signed in to change notification settings - Fork 3
/
sketch.py
201 lines (177 loc) · 6.78 KB
/
sketch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/bin/env python
#-*- coding: utf8 -*-
import tensorflow as tf
import numpy as np
CLASS_1 = 1 # next is space
CLASS_0 = 0 # next is not space
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def build_dictionary(sentences) :
char_rdic = []
for sentence in sentences :
for c in sentence :
if c not in char_rdic : char_rdic.append(c)
char_dic = {w: i for i, w in enumerate(char_rdic)} # char to id
return char_rdic, char_dic
def one_hot(i, size) :
return [ 1 if j == i else 0 for j in xrange(size) ]
def next_batch(sentences, begin, batch_size, n_steps, char_dic) :
'''
y_data = 1 or 0 => n_steps unfolding => [0,0,1,0,...]
^
|
x_data = [1,0,...,0] => n_steps unfolding => [[1,0,..0],..,[0,0,1,..0]]
batch_xs.shape => (batch_size, n_steps, n_input)
batch_ys.shape => (batch_size, n_steps)
'''
batch_xs = []
batch_ys = []
count = 0
vocab_size = len(char_dic)
for sentence in sentences[begin:] :
x_data = sentence[0:n_steps]
x_data = [char_dic[c] for c in x_data]
x_data = [one_hot(i, vocab_size) for i in x_data]
batch_xs.append(x_data)
y_data = []
for c in sentence[1:n_steps] :
if c == ' ' : y_data.append(CLASS_1) # next is space
else : y_data.append(CLASS_0) # next is not space
y_data.append(CLASS_0)
batch_ys.append(y_data)
count += 1
if count == batch_size : break
batch_xs = np.array(batch_xs, dtype='f')
batch_ys = np.array(batch_ys, dtype='int32')
return batch_xs, batch_ys
sentences = [u'이것을 띄어쓰기하면 어떻게 될까요.',
u'아버지가 방에 들어가신다.']
n_steps = len(sentences[0]) # time stpes
# padding
i = 0
while i < len(sentences) :
sentence = sentences[i]
length = len(sentence)
diff = n_steps - length
if diff > 0 : # add padding
sentences[i] += ' '*diff
i += 1
# config
learning_rate = 0.01
training_iters = 1000
char_rdic, char_dic = build_dictionary(sentences)
n_input = len(char_dic) # input dimension, vocab size
n_hidden = 8 # hidden layer size
n_classes = 2 # output classes, space or not
x = tf.placeholder("float", [None, n_steps, n_input])
y_ = tf.placeholder("int32", [None, n_steps])
# LSTM layer
# 2 x n_hidden = state_size = (hidden state + cell state)
istate = tf.placeholder("float", [None, 2*n_hidden])
weights = {
'hidden' : weight_variable([n_input, n_hidden]),
'out' : weight_variable([n_hidden, n_classes])
}
biases = {
'hidden' : bias_variable([n_hidden]),
'out': bias_variable([n_classes])
}
def RNN(_X, _istate, _weights, _biases):
# input _X shape: Tensor("Placeholder:0", shape=(?, n_steps, n_input), dtype=float32)
# switch n_steps and batch_size, Tensor("transpose:0", shape=(n_steps, ?, n_input), dtype=float32)
_X = tf.transpose(_X, [1, 0, 2])
# Reshape to prepare input to hidden activation
# (n_steps*batch_size, n_input) => (?, n_input), Tensor("Reshape:0", shape=(?, n_input), dtype=float32)
_X = tf.reshape(_X, [-1, n_input])
# Linear activation
_X = tf.matmul(_X, _weights['hidden']) + _biases['hidden'] # (?, n_hidden)+scalar(n_hidden,)=(?,n_hidden)
# Define a lstm cell with tensorflow
lstm_cell = tf.contrib.rnn.LSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=False)
# Split data because rnn cell needs a list of inputs for the RNN inner loop
# n_steps splits each of which contains (?, n_hidden)
# ex) [<tf.Tensor 'split:0' shape=(?, n_hidden) dtype=float32>, ... , <tf.Tensor 'split:n_steps-1' shape=(?, n_hidden) dtype=float32>]
_X = tf.split(_X, n_steps, 0)
# Get lstm cell output
outputs, states = tf.contrib.rnn.static_rnn(cell=lstm_cell, inputs=_X, initial_state=_istate)
final_outputs = []
for output in outputs :
# Linear activation
final_output = tf.matmul(output, _weights['out']) + _biases['out'] # (?, n_classes)
final_outputs.append(final_output)
# [<tf.Tensor 'add_1:0' shape=(?, n_classes), ..., <tf.Tensor 'add_n_steps:0' shape=(?, n_classes) dtype=float32>]
return final_outputs
# training
y = RNN(x, istate, weights, biases)
batch_size = 1
# Tensor("Reshape_1:0", shape=(?, n_classes), dtype=float32)
logits = tf.reshape(tf.concat(y, 1), [-1, n_classes])
# Tensor("Placeholder_1:0", shape=(?, n_steps), dtype=int32)
targets = y_
seq_weights = tf.ones([n_steps * batch_size])
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets], [seq_weights])
cost = tf.reduce_sum(loss) / batch_size
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
NUM_THREADS = 1
sess = tf.Session(config=tf.ConfigProto(intra_op_parallelism_threads=NUM_THREADS,inter_op_parallelism_threads=NUM_THREADS,log_device_placement=False))
init = tf.global_variables_initializer()
sess.run(init)
step = 0
while step < training_iters :
begin = (step % (len(sentences)/batch_size)) * batch_size
batch_xs, batch_ys = next_batch(sentences, begin, batch_size, n_steps, char_dic)
'''
print 'batch_xs.shape : ' + str(batch_xs.shape)
print 'batch_xs : '
print batch_xs
print 'batch_ys.shape : ' + str(batch_ys.shape)
print 'batch_ys : '
print batch_ys
'''
c_istate = np.zeros((batch_size, 2*n_hidden))
feed={x: batch_xs, y_: batch_ys, istate: c_istate}
sess.run(optimizer, feed_dict=feed)
if step % 10 == 0 :
print 'step : %s' % step + ',' + 'cost : %s' % sess.run(cost, feed_dict=feed)
step += 1
# inference
test_sentences = [u'이것을띄어쓰기하면어떻게될까요.',
u'아버지가방에들어가신다.']
# padding
i = 0
while i < len(test_sentences) :
sentence = test_sentences[i]
length = len(sentence)
diff = n_steps - length
if diff > 0 : # add padding
test_sentences[i] += ' '*diff
i += 1
batch_size = len(test_sentences)
begin = 0
batch_xs, batch_ys = next_batch(test_sentences, begin, batch_size, n_steps, char_dic)
c_istate = np.zeros((batch_size, 2*n_hidden))
feed={x: batch_xs, y_: batch_ys, istate: c_istate}
result = sess.run(tf.arg_max(logits, 1), feed_dict=feed)
i = 0
while i < len(test_sentences) :
sentence = test_sentences[i]
bidx = i*n_steps
eidx = bidx + n_steps
rst = result[bidx:eidx]
# generate output using tag(space or not)
out = []
j = 0
while j < n_steps :
tag = rst[j]
if tag == CLASS_1 :
out.append(sentence[j])
out.append(' ')
else :
out.append(sentence[j])
j += 1
n_sentence = ''.join(out).strip()
print 'out = ' + n_sentence
i += 1