diff --git a/pygam/pygam.py b/pygam/pygam.py index d3e84d44..b873b6a6 100644 --- a/pygam/pygam.py +++ b/pygam/pygam.py @@ -2523,6 +2523,9 @@ class LinearGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2556,7 +2559,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(LinearGAM, self).__init__(distribution=NormalDist(scale=self.scale), link='identity', @@ -2571,7 +2574,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link'] @@ -2718,6 +2722,9 @@ class LogisticGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2751,7 +2758,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, callbacks=['deviance', 'diffs', 'accuracy'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): # call super super(LogisticGAM, self).__init__(distribution='binomial', @@ -2767,7 +2774,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) # ignore any variables self._exclude += ['distribution', 'link'] @@ -2939,6 +2947,9 @@ class PoissonGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2972,7 +2983,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): # call super super(PoissonGAM, self).__init__(distribution='poisson', @@ -2988,7 +2999,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) # ignore any variables self._exclude += ['distribution', 'link'] @@ -3363,6 +3375,9 @@ class GammaGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -3396,7 +3411,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(GammaGAM, self).__init__(distribution=GammaDist(scale=self.scale), link='log', @@ -3411,7 +3426,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link'] @@ -3549,6 +3565,9 @@ class InvGaussGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -3582,7 +3601,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(InvGaussGAM, self).__init__(distribution=InvGaussDist(scale=self.scale), link='log', @@ -3597,7 +3616,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link']