diff --git a/pygam/pygam.py b/pygam/pygam.py index a54bdab6..c6690ca6 100644 --- a/pygam/pygam.py +++ b/pygam/pygam.py @@ -2539,6 +2539,9 @@ class LinearGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2572,7 +2575,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(LinearGAM, self).__init__(distribution=NormalDist(scale=self.scale), link='identity', @@ -2587,7 +2590,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link'] @@ -2734,6 +2738,9 @@ class LogisticGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2767,7 +2774,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, callbacks=['deviance', 'diffs', 'accuracy'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): # call super super(LogisticGAM, self).__init__(distribution='binomial', @@ -2783,7 +2790,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) # ignore any variables self._exclude += ['distribution', 'link'] @@ -2955,6 +2963,9 @@ class PoissonGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -2988,7 +2999,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): # call super super(PoissonGAM, self).__init__(distribution='poisson', @@ -3004,7 +3015,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) # ignore any variables self._exclude += ['distribution', 'link'] @@ -3379,6 +3391,9 @@ class GammaGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -3412,7 +3427,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(GammaGAM, self).__init__(distribution=GammaDist(scale=self.scale), link='log', @@ -3427,7 +3442,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link'] @@ -3565,6 +3581,9 @@ class InvGaussGAM(GAM): tol : float, default: 1e-4 Tolerance for stopping criteria. + verbose : bool, default: False + whether to show pyGAM warnings + Attributes ---------- coef_ : array, shape (n_classes, m_features) @@ -3598,7 +3617,7 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, penalties='auto', dtype='auto', tol=1e-4, scale=None, callbacks=['deviance', 'diffs'], fit_intercept=True, fit_linear=False, fit_splines=True, - constraints=None): + constraints=None, verbose=False): self.scale = scale super(InvGaussGAM, self).__init__(distribution=InvGaussDist(scale=self.scale), link='log', @@ -3613,7 +3632,8 @@ def __init__(self, lam=0.6, max_iter=100, n_splines=25, spline_order=3, fit_intercept=fit_intercept, fit_linear=fit_linear, fit_splines=fit_splines, - constraints=constraints) + constraints=constraints, + verbose=verbose) self._exclude += ['distribution', 'link']