-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreproduce.R
483 lines (412 loc) · 19.8 KB
/
reproduce.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
source("setup.R")
if (!file.exists("result")) {
dir.create("result")
}
methods_updated = c("CovAdj-Wilcoxon-linear", "CovAdj-Wilcoxon-robust",
"CovAdj-Wilcoxon-quadratic", "linear-CATE-test",
"i-Wilcoxon-robust-signedA_adapt",
"i-Wilcoxon-quadratic-signedA_adapt",
"i-bid-linear", "i-bid-robust", "i-bid-quadratic",
"i-bid-linear-bi", "i-bid-robust-bi", "i-bid-quadratic-bi",
"i-bid-cross-linear", "i-bid-cross-robust", "i-bid-cross-quadratic")
############################ Figure 2 ##################################
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/i_bet_", treatment_type,"_bell.Rdata", sep = ""))
############################ Figure 3 ##################################
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/i_bet_", treatment_type,"_skewed.Rdata", sep = ""))
############################ Figure 4 ##################################
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/i_bet_", treatment_type,"_cauchy.Rdata", sep = ""))
############################ Figure 5 ##################################
treatment_type = "quadratic"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/i_bet_", treatment_type,"_bell.Rdata", sep = ""))
if(0){
############################ Figure 12 ##################################
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "methods_interactive",
value = c("i-Wilcoxon-robust-signedA",
"i-Wilcoxon-robust-signedA_adapt")),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_adapt.Rdata", sep = ""))
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "methods_interactive",
value = c("i-Wilcoxon-robust-signedA",
"i-Wilcoxon-robust-signedA_adapt")),
list(name = "iter_round", value = 20),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"control_skewed_adapt.Rdata", sep = ""))
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "methods_interactive",
value = c("i-Wilcoxon-robust-signedA",
"i-Wilcoxon-robust-signedA_adapt")),
list(name = "iter_round", value = 20),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"cauchy_adapt.Rdata", sep = ""))
treatment_type = "quadratic"
max_scale = 5/3; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "methods_interactive",
value = c("i-Wilcoxon-quadratic-signedA",
"i-Wilcoxon-quadratic-signedA_adapt")),
list(name = "iter_round", value = 20),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_adapt.Rdata", sep = ""))
############################ Figure 14 ##################################
treatment_type = "linear"
max_scale = 5; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_cauchy_updated.Rdata", sep = ""))
########################################################################
######################### variant Wilcoxon #############################
########################################################################
############# dense-weak effect
###############################
treatment_type = "dense_weak"; max_scale = 5
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, ".Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_control_skewed.Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_cauchy.Rdata", sep = ""))
########## sparse-strong effect
###############################
treatment_type = "sparse_strong"; max_scale = 5
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, ".Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_control_skewed.Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_cauchy.Rdata", sep = ""))
############## two-sided effect
###############################
treatment_type = "both_pos_strong"; max_scale = 5
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, ".Rdata", sep = ""))
treatment_type = "both_sparse_strong"; max_scale = 5
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, ".Rdata", sep = ""))
treatment_type = "both_dense_weak"; max_scale = 5
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, ".Rdata", sep = ""))
#########################################################################
########################### small sample size ##########################
#########################################################################
#########################################################################
########################### Figure 15 ###################################
#########################################################################
############################ Figure 15 (a) ##################################
treatment_type = "linear"
max_scale = 10; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_control_skewed_updated_small.Rdata", sep = ""))
############################ Figure 15 (b) ##################################
treatment_type = "linear"
max_scale = 10; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_cauchy_updated_small.Rdata", sep = ""))
############################ Figure 15 (c) ##################################
treatment_type = "quadratic"
max_scale = 10; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "methods_interactive",
value = methods_updated),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_updated_small.Rdata", sep = ""))
############################ Figure 16 ##################################
treatment_type = "linear"
max_scale = 10; Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "methods_interactive",
value = c("i-Wilcoxon-robust-signedA", "i-Wilcoxon-oracle")),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_interactive(para_vary)
}
save(result, file=paste("result/", treatment_type,"_cauchy_oracle_small.Rdata", sep = ""))
########################################################################
######################### Figure 17 ####################################
########################################################################
############# dense-weak effect
###############################
treatment_type = "dense_weak"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_small.Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_control_skewed_small.Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_cauchy_small.Rdata", sep = ""))
########## sparse-strong effect
###############################
treatment_type = "sparse_strong_smallN"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_small.Rdata", sep = ""))
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "skewed"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_control_skewed_small.Rdata", sep = ""))
treatment_type = "sparse_strong_smallN"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "e_D", value = "Cauchy"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_cauchy_small.Rdata", sep = ""))
############## two-sided effect
###############################
treatment_type = "both_pos_strong_smallN"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_small.Rdata", sep = ""))
treatment_type = "both_sparse_strong"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_small.Rdata", sep = ""))
treatment_type = "both_dense_weak"; max_scale = 10
Cd_seq = seq(0, max_scale, length.out = 6)
result = list()
for (Cd in Cd_seq) {
para_vary = list(list(name = "treatment_type", value = treatment_type),
list(name = "control_type", value = "bell"),
list(name = "n", value = 50),
list(name = "m", value = 10),
list(name = "C_delta", value = Cd))
result[[as.character(Cd)]] = experiment_var_Wilcoxon(para_vary)
}
save(result, file=paste("result/", treatment_type, "_small.Rdata", sep = ""))
}
}