-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathHandCraftedModules.py
363 lines (329 loc) · 16.2 KB
/
HandCraftedModules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import math
import numpy as np
from Utils import GaussianBlur, CircularGaussKernel
from LAF import abc2A,rectifyAffineTransformationUpIsUp, sc_y_x2LAFs,sc_y_x_and_A2LAFs
from Utils import generate_2dgrid, generate_2dgrid, generate_3dgrid
from Utils import zero_response_at_border
class ScalePyramid(nn.Module):
def __init__(self, nLevels = 3, init_sigma = 1.6, border = 5):
super(ScalePyramid,self).__init__()
self.nLevels = nLevels;
self.init_sigma = init_sigma
self.sigmaStep = 2 ** (1. / float(self.nLevels))
#print 'step',self.sigmaStep
self.b = border
self.minSize = 2 * self.b + 2 + 1;
return
def forward(self,x):
pixelDistance = 1.0;
curSigma = 0.5
if self.init_sigma > curSigma:
sigma = np.sqrt(self.init_sigma**2 - curSigma**2)
curSigma = self.init_sigma
curr = GaussianBlur(sigma = sigma)(x)
else:
curr = x
sigmas = [[curSigma]]
pixel_dists = [[1.0]]
pyr = [[curr]]
j = 0
while True:
curr = pyr[-1][0]
for i in range(1, self.nLevels + 2):
sigma = curSigma * np.sqrt(self.sigmaStep*self.sigmaStep - 1.0 )
#print 'blur sigma', sigma
curr = GaussianBlur(sigma = sigma)(curr)
curSigma *= self.sigmaStep
pyr[j].append(curr)
sigmas[j].append(curSigma)
pixel_dists[j].append(pixelDistance)
if i == self.nLevels:
nextOctaveFirstLevel = F.avg_pool2d(curr, kernel_size = 1, stride = 2, padding = 0)
pixelDistance = pixelDistance * 2.0
curSigma = self.init_sigma
if (nextOctaveFirstLevel[0,0,:,:].size(0) <= self.minSize) or (nextOctaveFirstLevel[0,0,:,:].size(1) <= self.minSize):
break
pyr.append([nextOctaveFirstLevel])
sigmas.append([curSigma])
pixel_dists.append([pixelDistance])
j+=1
return pyr, sigmas, pixel_dists
class HessianResp(nn.Module):
def __init__(self):
super(HessianResp, self).__init__()
self.gx = nn.Conv2d(1, 1, kernel_size=(1,3), bias = False)
self.gx.weight.data = torch.from_numpy(np.array([[[[0.5, 0, -0.5]]]], dtype=np.float32))
self.gy = nn.Conv2d(1, 1, kernel_size=(3,1), bias = False)
self.gy.weight.data = torch.from_numpy(np.array([[[[0.5], [0], [-0.5]]]], dtype=np.float32))
self.gxx = nn.Conv2d(1, 1, kernel_size=(1,3),bias = False)
self.gxx.weight.data = torch.from_numpy(np.array([[[[1.0, -2.0, 1.0]]]], dtype=np.float32))
self.gyy = nn.Conv2d(1, 1, kernel_size=(3,1), bias = False)
self.gyy.weight.data = torch.from_numpy(np.array([[[[1.0], [-2.0], [1.0]]]], dtype=np.float32))
return
def forward(self, x, scale):
gxx = self.gxx(F.pad(x, (1,1,0, 0), 'replicate'))
gyy = self.gyy(F.pad(x, (0,0, 1,1), 'replicate'))
gxy = self.gy(F.pad(self.gx(F.pad(x, (1,1,0, 0), 'replicate')), (0,0, 1,1), 'replicate'))
return torch.abs(gxx * gyy - gxy * gxy) * (scale**4)
class AffineShapeEstimator(nn.Module):
def __init__(self, threshold = 0.001, patch_size = 19):
super(AffineShapeEstimator, self).__init__()
self.threshold = threshold;
self.PS = patch_size
self.gx = nn.Conv2d(1, 1, kernel_size=(1,3), bias = False)
self.gx.weight.data = torch.from_numpy(np.array([[[[-1, 0, 1]]]], dtype=np.float32))
self.gy = nn.Conv2d(1, 1, kernel_size=(3,1), bias = False)
self.gy.weight.data = torch.from_numpy(np.array([[[[-1], [0], [1]]]], dtype=np.float32))
self.gk = torch.from_numpy(CircularGaussKernel(kernlen = self.PS, sigma = (self.PS / 2) /3.0).astype(np.float32))
self.gk = Variable(self.gk, requires_grad=False)
return
def invSqrt(self,a,b,c):
eps = 1e-12
mask = (b != 0).float()
r1 = mask * (c - a) / (2. * b + eps)
t1 = torch.sign(r1) / (torch.abs(r1) + torch.sqrt(1. + r1*r1));
r = 1.0 / torch.sqrt( 1. + t1*t1)
t = t1*r;
r = r * mask + 1.0 * (1.0 - mask);
t = t * mask;
x = 1. / torch.sqrt( r*r*a - 2.0*r*t*b + t*t*c)
z = 1. / torch.sqrt( t*t*a + 2.0*r*t*b + r*r*c)
d = torch.sqrt( x * z)
x = x / d
z = z / d
l1 = torch.max(x,z)
l2 = torch.min(x,z)
new_a = r*r*x + t*t*z
new_b = -r*t*x + t*r*z
new_c = t*t*x + r*r *z
return new_a, new_b, new_c, l1, l2
def forward(self,x):
if x.is_cuda:
self.gk = self.gk.cuda()
else:
self.gk = self.gk.cpu()
gx = self.gx(F.pad(x, (1, 1, 0, 0), 'replicate'))
gy = self.gy(F.pad(x, (0, 0, 1, 1), 'replicate'))
a1 = (gx * gx * self.gk.unsqueeze(0).unsqueeze(0).expand_as(gx)).view(x.size(0),-1).mean(dim=1)
b1 = (gx * gy * self.gk.unsqueeze(0).unsqueeze(0).expand_as(gx)).view(x.size(0),-1).mean(dim=1)
c1 = (gy * gy * self.gk.unsqueeze(0).unsqueeze(0).expand_as(gx)).view(x.size(0),-1).mean(dim=1)
a, b, c, l1, l2 = self.invSqrt(a1,b1,c1)
rat1 = l1/l2
mask = (torch.abs(rat1) <= 6.).float().view(-1);
return rectifyAffineTransformationUpIsUp(abc2A(a,b,c))#, mask
class OrientationDetector(nn.Module):
def __init__(self,
mrSize = 3.0, patch_size = None):
super(OrientationDetector, self).__init__()
if patch_size is None:
patch_size = 32;
self.PS = patch_size;
self.bin_weight_kernel_size, self.bin_weight_stride = self.get_bin_weight_kernel_size_and_stride(self.PS, 1)
self.mrSize = mrSize;
self.num_ang_bins = 36
self.gx = nn.Conv2d(1, 1, kernel_size=(1,3), bias = False)
self.gx.weight.data = torch.from_numpy(np.array([[[[0.5, 0, -0.5]]]], dtype=np.float32))
self.gy = nn.Conv2d(1, 1, kernel_size=(3,1), bias = False)
self.gy.weight.data = torch.from_numpy(np.array([[[[0.5], [0], [-0.5]]]], dtype=np.float32))
self.angular_smooth = nn.Conv1d(1, 1, kernel_size=3, padding = 1, bias = False)
self.angular_smooth.weight.data = torch.from_numpy(np.array([[[0.33, 0.34, 0.33]]], dtype=np.float32))
self.gk = 10. * torch.from_numpy(CircularGaussKernel(kernlen=self.PS).astype(np.float32))
self.gk = Variable(self.gk, requires_grad=False)
return
def get_bin_weight_kernel_size_and_stride(self, patch_size, num_spatial_bins):
bin_weight_stride = int(round(2.0 * np.floor(patch_size / 2) / float(num_spatial_bins + 1)))
bin_weight_kernel_size = int(2 * bin_weight_stride - 1);
return bin_weight_kernel_size, bin_weight_stride
def get_rotation_matrix(self, angle_in_radians):
angle_in_radians = angle_in_radians.view(-1, 1, 1);
sin_a = torch.sin(angle_in_radians)
cos_a = torch.cos(angle_in_radians)
A1_x = torch.cat([cos_a, sin_a], dim = 2)
A2_x = torch.cat([-sin_a, cos_a], dim = 2)
transform = torch.cat([A1_x,A2_x], dim = 1)
return transform
def forward(self, x, return_rot_matrix = False):
gx = self.gx(F.pad(x, (1,1,0, 0), 'replicate'))
gy = self.gy(F.pad(x, (0,0, 1,1), 'replicate'))
mag = torch.sqrt(gx * gx + gy * gy + 1e-10)
if x.is_cuda:
self.gk = self.gk.cuda()
mag = mag * self.gk.unsqueeze(0).unsqueeze(0).expand_as(mag)
ori = torch.atan2(gy,gx)
o_big = float(self.num_ang_bins) *(ori + 1.0 * math.pi )/ (2.0 * math.pi)
bo0_big = torch.floor(o_big)
wo1_big = o_big - bo0_big
bo0_big = bo0_big % self.num_ang_bins
bo1_big = (bo0_big + 1) % self.num_ang_bins
wo0_big = (1.0 - wo1_big) * mag
wo1_big = wo1_big * mag
ang_bins = []
for i in range(0, self.num_ang_bins):
ang_bins.append(F.adaptive_avg_pool2d((bo0_big == i).float() * wo0_big, (1,1)))
ang_bins = torch.cat(ang_bins,1).view(-1,1,self.num_ang_bins)
ang_bins = self.angular_smooth(ang_bins)
values, indices = ang_bins.view(-1,self.num_ang_bins).max(1)
angle = -((2. * float(np.pi) * indices.float() / float(self.num_ang_bins)) - float(math.pi))
if return_rot_matrix:
return self.get_rotation_matrix(angle)
return angle
class NMS2d(nn.Module):
def __init__(self, kernel_size = 3, threshold = 0):
super(NMS2d, self).__init__()
self.MP = nn.MaxPool2d(kernel_size, stride=1, return_indices=False, padding = kernel_size/2)
self.eps = 1e-5
self.th = threshold
return
def forward(self, x):
#local_maxima = self.MP(x)
if self.th > self.eps:
return x * (x > self.th).float() * ((x + self.eps - self.MP(x)) > 0).float()
else:
return ((x - self.MP(x) + self.eps) > 0).float() * x
class NMS3d(nn.Module):
def __init__(self, kernel_size = 3, threshold = 0):
super(NMS3d, self).__init__()
self.MP = nn.MaxPool3d(kernel_size, stride=1, return_indices=False, padding = (0, kernel_size//2, kernel_size//2))
self.eps = 1e-5
self.th = threshold
return
def forward(self, x):
#local_maxima = self.MP(x)
if self.th > self.eps:
return x * (x > self.th).float() * ((x + self.eps - self.MP(x)) > 0).float()
else:
return ((x - self.MP(x) + self.eps) > 0).float() * x
class NMS3dAndComposeA(nn.Module):
def __init__(self, w = 0, h = 0, kernel_size = 3, threshold = 0, scales = None, border = 3, mrSize = 1.0):
super(NMS3dAndComposeA, self).__init__()
self.eps = 1e-7
self.ks = 3
self.th = threshold
self.cube_idxs = []
self.border = border
self.mrSize = mrSize
self.beta = 1.0
self.grid_ones = Variable(torch.ones(3,3,3,3), requires_grad=False)
self.NMS3d = NMS3d(kernel_size, threshold)
if (w > 0) and (h > 0):
self.spatial_grid = generate_2dgrid(h, w, False).view(1, h, w,2).permute(3,1, 2, 0)
self.spatial_grid = Variable(self.spatial_grid)
else:
self.spatial_grid = None
return
def forward(self, low, cur, high, num_features = 0, octaveMap = None, scales = None):
assert low.size() == cur.size() == high.size()
#Filter responce map
self.is_cuda = low.is_cuda;
resp3d = torch.cat([low,cur,high], dim = 1)
mrSize_border = int(self.mrSize);
if octaveMap is not None:
nmsed_resp = zero_response_at_border(self.NMS3d(resp3d.unsqueeze(1)).squeeze(1)[:,1:2,:,:], mrSize_border) * (1. - octaveMap.float())
else:
nmsed_resp = zero_response_at_border(self.NMS3d(resp3d.unsqueeze(1)).squeeze(1)[:,1:2,:,:], mrSize_border)
num_of_nonzero_responces = (nmsed_resp > 0).float().sum().item()#data[0]
if (num_of_nonzero_responces <= 1):
return None,None,None
if octaveMap is not None:
octaveMap = (octaveMap.float() + nmsed_resp.float()).byte()
nmsed_resp = nmsed_resp.view(-1)
if (num_features > 0) and (num_features < num_of_nonzero_responces):
nmsed_resp, idxs = torch.topk(nmsed_resp, k = num_features, dim = 0);
else:
idxs = nmsed_resp.data.nonzero().squeeze()
nmsed_resp = nmsed_resp[idxs]
#Get point coordinates grid
if type(scales) is not list:
self.grid = generate_3dgrid(3,self.ks,self.ks)
else:
self.grid = generate_3dgrid(scales,self.ks,self.ks)
self.grid = Variable(self.grid.t().contiguous().view(3,3,3,3), requires_grad=False)
if self.spatial_grid is None:
self.spatial_grid = generate_2dgrid(low.size(2), low.size(3), False).view(1, low.size(2), low.size(3),2).permute(3,1, 2, 0)
self.spatial_grid = Variable(self.spatial_grid)
if self.is_cuda:
self.spatial_grid = self.spatial_grid.cuda()
self.grid_ones = self.grid_ones.cuda()
self.grid = self.grid.cuda()
#residual_to_patch_center
sc_y_x = F.conv2d(resp3d, self.grid,
padding = 1) / (F.conv2d(resp3d, self.grid_ones, padding = 1) + 1e-8)
##maxima coords
sc_y_x[0,1:,:,:] = sc_y_x[0,1:,:,:] + self.spatial_grid[:,:,:,0]
sc_y_x = sc_y_x.view(3,-1).t()
sc_y_x = sc_y_x[idxs,:]
min_size = float(min((cur.size(2)), cur.size(3)))
sc_y_x[:,0] = sc_y_x[:,0] / min_size
sc_y_x[:,1] = sc_y_x[:,1] / float(cur.size(2))
sc_y_x[:,2] = sc_y_x[:,2] / float(cur.size(3))
return nmsed_resp, sc_y_x2LAFs(sc_y_x), octaveMap
class NMS3dAndComposeAAff(nn.Module):
def __init__(self, w = 0, h = 0, kernel_size = 3, threshold = 0, scales = None, border = 3, mrSize = 1.0):
super(NMS3dAndComposeAAff, self).__init__()
self.eps = 1e-7
self.ks = 3
self.th = threshold
self.cube_idxs = []
self.border = border
self.mrSize = mrSize
self.beta = 1.0
self.grid_ones = Variable(torch.ones(3,3,3,3), requires_grad=False)
self.NMS3d = NMS3d(kernel_size, threshold)
if (w > 0) and (h > 0):
self.spatial_grid = generate_2dgrid(h, w, False).view(1, h, w,2).permute(3,1, 2, 0)
self.spatial_grid = Variable(self.spatial_grid)
else:
self.spatial_grid = None
return
def forward(self, low, cur, high, num_features = 0, octaveMap = None, scales = None, aff_resp = None):
assert low.size() == cur.size() == high.size()
#Filter responce map
self.is_cuda = low.is_cuda;
resp3d = torch.cat([low,cur,high], dim = 1)
mrSize_border = int(self.mrSize);
if octaveMap is not None:
nmsed_resp = zero_response_at_border(self.NMS3d(resp3d.unsqueeze(1)).squeeze(1)[:,1:2,:,:], mrSize_border) * (1. - octaveMap.float())
else:
nmsed_resp = zero_response_at_border(self.NMS3d(resp3d.unsqueeze(1)).squeeze(1)[:,1:2,:,:], mrSize_border)
num_of_nonzero_responces = (nmsed_resp > 0).float().sum().item()#data[0]
if (num_of_nonzero_responces <= 1):
return None,None,None
if octaveMap is not None:
octaveMap = (octaveMap.float() + nmsed_resp.float()).byte()
nmsed_resp = nmsed_resp.view(-1)
if (num_features > 0) and (num_features < num_of_nonzero_responces):
nmsed_resp, idxs = torch.topk(nmsed_resp, k = num_features, dim = 0);
else:
idxs = nmsed_resp.data.nonzero().squeeze()
nmsed_resp = nmsed_resp[idxs]
#Get point coordinates grid
if type(scales) is not list:
self.grid = generate_3dgrid(3,self.ks,self.ks)
else:
self.grid = generate_3dgrid(scales,self.ks,self.ks)
self.grid = Variable(self.grid.t().contiguous().view(3,3,3,3), requires_grad=False)
if self.spatial_grid is None:
self.spatial_grid = generate_2dgrid(low.size(2), low.size(3), False).view(1, low.size(2), low.size(3),2).permute(3,1, 2, 0)
self.spatial_grid = Variable(self.spatial_grid)
if self.is_cuda:
self.spatial_grid = self.spatial_grid.cuda()
self.grid_ones = self.grid_ones.cuda()
self.grid = self.grid.cuda()
#residual_to_patch_center
sc_y_x = F.conv2d(resp3d, self.grid,
padding = 1) / (F.conv2d(resp3d, self.grid_ones, padding = 1) + 1e-8)
##maxima coords
sc_y_x[0,1:,:,:] = sc_y_x[0,1:,:,:] + self.spatial_grid[:,:,:,0]
sc_y_x = sc_y_x.view(3,-1).t()
sc_y_x = sc_y_x[idxs,:]
if aff_resp is not None:
A_matrices = aff_resp.view(4,-1).t()[idxs,:]
min_size = float(min((cur.size(2)), cur.size(3)))
sc_y_x[:,0] = sc_y_x[:,0] / min_size
sc_y_x[:,1] = sc_y_x[:,1] / float(cur.size(2))
sc_y_x[:,2] = sc_y_x[:,2] / float(cur.size(3))
return nmsed_resp, sc_y_x_and_A2LAFs(sc_y_x,A_matrices), octaveMap