forked from wrf-model/TechNote
-
Notifications
You must be signed in to change notification settings - Fork 0
/
V3_eqns_errata.tex
87 lines (78 loc) · 5.09 KB
/
V3_eqns_errata.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
%\magnification=1200
\raggedright
\overfullrule=0pt
\parskip=0pt
\parindent=0pt
Corrections for the WRF Version 3 Tech Note, 24 October 2011.
\bigskip
Page 10, added map scale factors to pressure gradient terms:
$$ \eqalignno{
\partial_t U + m_x\left[\partial_x (Uu) + \partial_y (Vu)\right] + \hphantom{(m_x/m_y)} \partial_\eta (\Omega u)
+(m_x/m_y) [ \mu_d \alpha \partial_x p + (\alpha/\alpha_d) \partial_\eta p \partial_x \phi ] & = F_U & (2.23) \cr
%
\partial_t V + m_y\left[\partial_x (Uv) + \partial_y (Vv)\right] + {(m_y/m_x)} \partial_\eta (\Omega v)
+(m_y/m_x) [ \mu_d \alpha \partial_y p + (\alpha/\alpha_d) \partial_\eta p \partial_y \phi ]& = F_V & (2.24) \cr }
$$
Page 11, 4th line from bottom, change $\alpha = \overline{\alpha}(\overline{z}) + \alpha'$ to $\alpha_d = \overline{\alpha_d}(\overline{z}) + \alpha'_d$.
Page 12, added map scale factors to pressure gradient terms, {\bf pressure gradient now written as it \break \hfill appears in the ARW code and Klemp et al 2007:}
$$ \eqalignno{
\partial_t U + & m_x\left[\partial_x (Uu) + \partial_y (Vu)\right] + \partial_\eta (\Omega u) & \cr
& +(m_x/m_y) (\alpha/\alpha_d) \left[ \mu_d (\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) +
\partial_x \phi (\partial_\eta p' - \mu'_d)\right] = F_U & (2.38) \cr
%
\partial_t V + & m_y\left[\partial_x (Uv) + \partial_y (Vv)\right] + {(m_y/m_x)} \partial_\eta (\Omega v) & \cr
& +(m_y/m_x) (\alpha/\alpha_d) \left[ \mu_d (\partial_y \phi' + \alpha_d \partial_y p' + \alpha'_d \partial_y \overline{p}) +
\partial_y \phi (\partial_\eta p' - \mu'_d)\right] = F_V & (2.39) \cr
}
$$
Page 15, added map scale factors to pressure gradient terms, reordered terms to better match Klemp et al 2007:
$$ \eqalignno{
\partial_t U'' + (m_x/m_y)(\alpha^{t^*}/\alpha^{t^*}_d) \left[\mu_d^{t^*} \left(
\alpha_d^{t^*} \partial_x {p''}^\tau + {\alpha_d''}^\tau \partial_x {\overline p} + \partial_x {\phi''}^\tau \right)
+ \partial_x \phi^{t^*} \left(\partial_\eta {p''} - {\mu''_d} \right)^\tau \right] & = R_U^{t^*} & (3.7) \cr
%
\partial_t V'' + (m_y/m_x)(\alpha^{t^*}/\alpha^{t^*}_d) \left[\mu_d^{t^*} \left(
\alpha_d^{t^*} \partial_y {p''}^\tau + {\alpha_d''}^\tau \partial_y {\overline p} + \partial_y {\phi''}^\tau \right)
+ \partial_y \phi^{t^*} \left(\partial_\eta {p''} - {\mu''_d} \right)^\tau \right] & = R_V^{t^*} & (3.8) \cr
}
$$
Page 15, added map scale factors to pressure gradient terms, {\bf pressure gradient now written as it \break \hfill appears in the ARW code and Klemp et al 2007:}
$$ \eqalignno{
R_U^{t^*} = & - m_x\left[\partial_x (Uu) + \partial_y (Vu)\right] - \partial_\eta (\Omega u) & \cr
& -(m_x/m_y) (\alpha/\alpha_d) \left[ \mu_d (\partial_x \phi' + \alpha_d \partial_x p' + \alpha'_d \partial_x \overline{p}) +
\partial_x \phi (\partial_\eta p' - \mu'_d)\right] & (3.13) \cr
%
R_V^{t^*} = & - m_y\left[\partial_x (Uv) + \partial_y (Vv)\right] - (m_y/m_x) \partial_\eta (\Omega v) & \cr
& -(m_y/m_x) (\alpha/\alpha_d) \left[ \mu_d (\partial_y \phi' + \alpha_d \partial_y p' + \alpha'_d \partial_y \overline{p}) +
\partial_y \phi (\partial_\eta p' - \mu'_d)\right] & (3.14) \cr
}
$$
Page 19, added map scale factors to pressure gradient terms, reordered terms to better match Klemp et al 2007:
$$ \eqalignno{
\partial_t U'' + (m_x/m_y)\overline{(\alpha^{t^*}/\alpha^{t^*}_d)}^x \bigg[\overline{\mu_d^{t^*}}^x\bigg(
\overline{\alpha_d^{t^*}}^x \partial_x & {p''}^\tau + \overline{{\alpha_d''}^\tau}^x \partial_x {\overline p}
+ \partial_x \overline{{\phi''}^\tau}^\eta \bigg) & \cr
& + \partial_x \overline{\phi^{t^*}}^\eta \bigg(\partial_\eta \overline{\overline{{p''}}^x}^\eta - \overline{{\mu''_d}}^x \bigg)^\tau \,\bigg] = R_U^{t^*} & (3.21) \cr
%
\partial_t V'' + (m_y/m_x)\overline{(\alpha^{t^*}/\alpha^{t^*}_d)}^y \bigg[\overline{\mu_d^{t^*}}^y\bigg(
\overline{\alpha_d^{t^*}}^y \partial_y & {p''}^\tau + \overline{{\alpha_d''}^\tau}^y \partial_y {\overline p}
+ \partial_y \overline{{\phi''}^\tau}^\eta \bigg) & \cr
& + \partial_y \overline{\phi^{t^*}}^\eta \bigg(\partial_\eta \overline{\overline{{p''}}^y}^\eta - \overline{{\mu''_d}}^y \bigg)^\tau \, \bigg] = R_V^{t^*} & (3.22) \cr
}
$$
Page 20, added map scale factors to pressure gradient terms, {\bf pressure gradient now written as it \break \hfill appears in the ARW code and Klemp et al 2007:}
$$ \eqalignno{
R_U^{t^*} =
-(m_x/m_y) \overline{(\alpha/\alpha_d)}^x & \left[ \overline{\mu_d}^x (\partial_x \overline{\phi'}^\eta
+ \overline{\alpha_d}^x \partial_x p' + \overline{\alpha'_d}^x \partial_x \overline{p}) +
\partial_x \overline{\phi}^\eta (\partial_\eta \overline{\overline{p'}^x}^\eta - \overline{\mu'_d}^x)\right] & \cr
& + F_{U_{cor}} + \hbox{advection} + \hbox{mixing} + \hbox{physics,} & (3.29) \cr
%
R_V^{t^*} =
-(m_y/m_x) \overline{(\alpha/\alpha_d)}^y & \left[ \overline{\mu_d}^y (\partial_y \overline{\phi'}^\eta
+ \overline{\alpha_d}^y \partial_y p' + \overline{\alpha'_d}^y \partial_y \overline{p}) +
\partial_y \overline{\phi}^\eta (\partial_\eta \overline{\overline{p'}^y}^\eta - \overline{\mu'_d}^y)\right] & \cr
& + F_{V_{cor}} + \hbox{advection} + \hbox{mixing} + \hbox{physics,} & (3.30) \cr
}
$$
\vfill \eject \end