forked from wrf-model/TechNote
-
Notifications
You must be signed in to change notification settings - Fork 0
/
filter.tex
1017 lines (946 loc) · 35.4 KB
/
filter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Turbulent Mixing and Model Filters}
\label{filter_chap}
A number of formulations for turbulent mixing and filtering are
available in the ARW solver. Some of these filters are used for
numerical reasons. For example, divergence damping is used to filter
acoustic modes from the solution and polar filtering is used to reduce
the timestep restriction arising from the converging gridlines of the
latitude-longitude grid. Other filters are meant to represent
sub-grid turbulence processes that cannot be resolved on the chosen
grid. These filters remove energy from the solution and are formulated
in part on turbulence theory and observations, or represent energy sink
terms in some approximation to the Euler equation. In this section, we
begin by outlining the formulation and discretization of turbulent
mixing processes in the ARW solver commonly associated with sub-gridscale
turbulence as parameterized in cloud-scale models--- the second-order
horizontal and vertical mixing. In large-scale models and most NWP
models, vertical mixing is parameterized within the planetary boundary
layer (PBL) physics. Vertical mixing parameterized within the PBL
physics is described later in Chapter \ref{physics_chap}. Here we note
that, when a PBL parameterization is used, all other vertical mixing is
disabled. Following the outline of turbulent mixing parameterizations
in this chapter, other numerical filters available in the ARW solver are
described.
\section{Latitude-Longitude Global Grid and Polar Filtering}
\label{polar_filter_section}
Polar filtering is used to reduce the timestep restriction associated
with the gridlines that converge as they approach the poles of the
latitude-longitude grid; the converging gridlines reduce the
longitudinal gridlength, and thus the stable timestep for transport,
discussed in Section \ref{rk3_timestep_constraint}, and for acoustic
waves, discussed in Section \ref{acoustic_step_constraint}, will be reduced.
Polar filtering a given variable is accomplished by first applying a 1D
Fourier transform to the variable on a constant computational-grid
latitude circle (the forward transform), where the field is periodic.
The Fourier coefficients with wavenumbers above a prescribed threshold
are truncated, after which a transformation back to physical space is
applied (the backward transform), completing the filter step.
A filter application can be written as
%
\begin{equation}
\hat\phi(k)_{filtered} = a(k)\,\hat\phi(k), \,\,\,\,\, \hbox{for all }k,
\notag
\end{equation}
%
where $\hat\phi(k)$ and $\hat\phi(k)_{filtered}$ are the Fourier
coefficients for the generic variable $\phi$ before and after filtering,
and $a(k)$ are the filter coefficients defined as a function of the
dimensionless wavenumber $k$. The ARW polar filter coefficients $a(k)$
for the Fourier amplitudes are
%
\begin{equation}
a(k) = \hbox{min}\left[1.,\hbox{max}\left(0.,
\left({\cos{\psi} \over \cos{\psi_o}}\right)^2 {1 \over \sin^2({\pi k/n)}}
\right)\right]
\notag
%\label{polar-filter}
\end{equation}
%
where $\psi$ is the latitude on the computational grid, $\psi_o$ is the
latitude above which the polar filter is applied (the filter is applied
for $ |\psi| > \psi_o$), and $n$ is the number of grid points in the latitude
circle. For even $n$, the grid
admits wavenumber $k=0$ and dimensionless wavenumbers $\pm k$ for
$k=1\to n/2 - 1$, and the $2\Delta$ wave $k=n/2$. For odd $n$, the grid
admits wavenumber $k=0$, and dimensionless wavenumbers $\pm k$ for
$k=1\to (n-1)/2 $.
Polar filter applications within the split-explicit RK3 time integration
scheme are given in Figure \ref{time_integration_figure}.
Within the acoustic steps,
the filter is applied to
${U''}^{\tau+\Delta\tau}$ and ${V''}^{\tau+\Delta\tau}$ immediately
after the horizontal momentum is advanced, to $\mu_d^{\tau+\Delta\tau}$
and ${\Theta''}^{\tau+\Delta\tau}$ immediately after the column mass and
the potential temperature are advanced, and to ${W''}^{\tau+\Delta\tau}$
and ${\phi''}^{\tau+\Delta\tau}$ after the vertically implicit part of
the acoustic step is complete. The polar filter is also applied to the
scalars after they are advanced every RK3 sub-step
\eqref{rk3a}-\eqref{rk3c} and after the microphysics step.
The prognostic variables are coupled with the column mass $\mu$ when
filtered, and in this way mass is conserved. An exception to this is
the geopotential $\phi$ which is filtered without being coupled. The
Fourier filtering is conservative, but it is not monotonic or positive
definite. As noted in the ARW stability discussion in Section
\ref{global_considerations}, timestep stability should be based on the longitudinal
gridlength where the polar filters are activated, $(\Delta
x/m_x)|_{\psi_o}$. The positive definite transport option, presented in
Section \ref{positive-definite-transport}, will not necessarily produce
positive-definite results because of the converging gridlines and should
not be used.
\section{Explicit Spatial Diffusion}
The ARW solver has three formulations for spatial dissipation--- diffusion
along coordinate surfaces, diffusion in physical $(x,y,z)$ space, and
a sixth-order diffusion applied on horizontal coordinate surfaces. In
the following sections we present the diffusion operators for the the
first two
formulations, followed by the four separate formulations that can be
used to compute the eddy viscosities and a description of
the prognostic turbulent kinetic energy (TKE) equation used in one set
of these formulations. The sixth order spatial filter is described at
the end of this section. In these formulations, the horizontal ($K_h$) and
vertical ($K_v$) eddy viscosities are defined at scalar points on the
staggered model grid.
\subsection{Horizontal and Vertical Diffusion on Coordinate Surfaces}
For any model variable, horizontal and vertical second order spatial
filtering on model coordinate surfaces is considered part of the RHS
terms in the continuous equations
\eqref{u-mom-pert} -- \eqref{scalar-pert}
and can be expressed as follows for
a model variable $a$:
%
\begin{equation}
\partial_t (\mu_d a) = ... \,\,
+ \mu_d \bigl[ m_x \partial_x(m_x K_h \partial_x a)
+ m_y \partial_y(m_y K_h \partial_y a)\bigr]
+ g^2(\mu_d\alpha)^{-1} \partial_\eta(K_v \alpha^{-1} \partial_\eta a).
\label{dissipation_1}
\end{equation}
%
For the horizontal and vertical momentum equations,
\eqref{dissipation_1} is spatially discretized as
%
\begin{align}
\partial_t U &= ... \,\, +
{\overline{\mu_d}}^x {\overline{m_x}}^x
\bigl[ \delta_x(m_x K_h \delta_x u)
+ \delta_y({\overline{m_y}}^{xy} {\overline{K_h}}^{xy} \delta_y u) \bigr]
+ m_y^{-1} g^2({\overline{\mu_d}}^x {\overline\alpha}^x)^{-1}
%% \delta_\eta(K_v ({\overline \alpha}^{x\eta})^{-1} \delta_\eta u)
\delta_\eta({\overline K_v}^{x\eta} ({\overline \alpha}^{x\eta})^{-1} \delta_\eta u)
\notag \\
%
\partial_t V &= ... \,\, +
{\overline{\mu_d}}^y {\overline{m_y}}^y
\bigl[
\delta_x({\overline{m_x}}^{xy} {\overline K_h}^{xy} \delta_x v)
+\delta_y(m_y K_h \delta_y v)
\bigr]
+ m_x^{-1} g^2({\overline{\mu_d}}^y {\overline\alpha}^y)^{-1}
%% \delta_\eta(K_v ({\overline \alpha}^{y\eta})^{-1} \delta_\eta v)
\delta_\eta({\overline K_v}^{y\eta} ({\overline \alpha}^{y\eta})^{-1} \delta_\eta v)
\notag \\
%
\partial_t W &= ... \,\, +
\mu_d m_x
\bigl[
\delta_x({\overline m_x}^{x} {\overline K_h}^{x\eta} \delta_x w)
+\delta_y({\overline m_y}^{y} {\overline K_h}^{y\eta} \delta_y w)
\bigr]
+ m_y^{-1} g^2({\mu_d} {\overline\alpha}^\eta)^{-1}
\delta_\eta(K_v \alpha^{-1} \delta_\eta w).
\notag
\end{align}
%
\noindent
The spatial discretization for a scalar $ q$, defined at the mass
points, is
%
\begin{equation}
\partial_t (\mu_d q) = ... \,\, +
\mu_d m_x m_y
\bigl[
\delta_x({\overline m_x}^{x} P_r^{-1} {\overline K_h}^{x} \delta_x q)
+\delta_y({\overline m_y}^{y} P_r^{-1} {\overline K_h}^{y} \delta_y q)
\bigr]
+ g^2({\mu_d} {\alpha})^{-1}
%% \delta_\eta(K_v \alpha^{-1} \delta_\eta q).
\delta_\eta({\overline K_v}^\eta ({\overline \alpha}^\eta)^{-1} \delta_\eta q).
\notag
\end{equation}
%
\noindent
In the current ARW formulation for mixing on coordinate surfaces, the
horizontal eddy viscosity $K_h$ is allowed to vary in space, whereas the
vertical eddy viscosity does not vary in space; hence there is no need
for any spatial averaging of $K_v$. Additionally, note that the
horizontal eddy viscosity $K_h$ is multiplied by the inverse turbulent
Prandtl number $P_r^{-1}$ for horizontal scalar mixing.
\subsection{Horizontal and Vertical Diffusion in Physical Space}
\subsubsection{Coordinate Metrics}
We use the geometric height coordinate in this physical space
formulation.
The coordinate metrics are computed using the prognostic geopotential
in the ARW solver. At the beginning of each Runge-Kutta time step,
the coordinate metrics are evaluated as part of the overall
algorithm. The definitions of the metrics are
%
\begin{equation}
z_x = g^{-1} \delta_x \phi \,\,\, \hbox{and} \,\,\,
z_y = g^{-1} \delta_y \phi.
\notag
\end{equation}
%
\noindent
These metric terms are defined on $w$ levels, and
$(z_x, z_y)$ are
horizontally coincident with ($u$,$v$) points.
Additionally, the vertical diffusion terms are evaluated
directly in terms of the geometric height, avoiding the need
for metric terms in the vertical.
\subsubsection{Continuous Equations}
The continuous equations for evaluating diffusion in physical space,
using the velocity stress tensor, are as follows for
horizontal and vertical momentum:
%
\begin{align}
\partial_t U &= ...\,\,
- m_x \bigl[ \partial_x \tau_{11} + \partial_y \tau_{12}
- \partial_z ( z_x \tau_{11} + z_y \tau_{12}) \bigr]
- \partial_z \tau_{13}
\label{u-disp-phys} \\
%
\partial_t V &= ...\,\,
- m_y \bigl[ \partial_x \tau_{12} + \partial_y \tau_{22}
- \partial_z ( z_x \tau_{12} + z_y \tau_{22}) \bigr]
- \partial_z \tau_{23}
\label{v-disp-phys} \\
%
\partial_t W &= ...\,\,
- m_y \bigl[ \partial_x \tau_{13} + \partial_y \tau_{23}
- \partial_z ( z_x \tau_{13} + z_y \tau_{23}) \bigr]
- \partial_z \tau_{33}.
\label{w-disp-phys}
\end{align}
%
The stress tensor $\tau$ can be written as follows:
%
\begin{align}
\tau_{11} &= -\mu_d K_h D_{11}
\notag \\
%
\tau_{22} &= -\mu_d K_h D_{22}
\notag \\
%
\tau_{33} &= -\mu_d K_v D_{33}
\notag \\
%
\tau_{12} &= -\mu_d K_h D_{12}
\notag \\
%
\tau_{13} &= -\mu_d K_v D_{13}
\notag \\
%
\tau_{23} &= -\mu_d K_v D_{23}.
\notag
%
\end{align}
%
\noindent
Symmetry sets the remaining tensor values;
$\tau_{21} = \tau_{12}$, $\tau_{31} = \tau_{13}$, and $\tau_{32} = \tau_{23}$.
The stress tensor $\tau$ is calculated from the deformation tensor
$D$. The continuous deformation tensor is defined as
%
\begin{align}
D_{11} &= 2 \, m_x m_y \bigl[ \partial_x (m_y^{-1}u) - z_x \partial_z
(m_y^{-1}u) \bigl]
\notag \\
%
D_{22} &= 2 \, m_x m_y \bigl[ \partial_y (m_x^{-1}v) - z_y \partial_z
(m_x^{-1}v) \bigl]
\notag \\
%
D_{33} &= 2 \, \partial_z w
\notag \\
%
D_{12} &= m_x m_y \bigl[
\partial_y (m_y^{-1}u) - z_y \partial_z(m_y^{-1}u)
+ \partial_x (m_x^{-1}v) - z_x \partial_z (m_x^{-1}v)
\bigl]
\notag \\
%
D_{13} &= m_x m_y \bigl[
\partial_x (m_y^{-1}w) - z_x \partial_z(m_y^{-1}w)
\bigl]
+ \partial_z (u)
\notag \\
%
D_{23} &= m_x m_y \bigl[
\partial_y (m_y^{-1}w) - z_y \partial_z(m_y^{-1}w)
\bigl]
+ \partial_z (v).
\notag
%
\end{align}
%
\noindent
The deformation tensor is symmetric, hence
$D_{21} = D_{12}$, $D_{31} = D_{13}$, and $D_{32} = D_{23}$.
The diffusion formulation for scalars is
%
\begin{align}
\partial_t (\mu_d q) = ...\,\, + \bigl[
& \, m_x \bigl(\partial_x - \partial_z z_x \bigr )
%% \bigl( \mu_d m_x K (\partial_x - z_x \partial_z ) \bigr)
\bigl( \mu_d m_x K_h (\partial_x - z_x \partial_z ) \bigr)
+
\notag \\
& \, m_y \bigl(\partial_y - \partial_z z_y \bigr )
%% \bigl( \mu_d m_y K (\partial_y - z_y \partial_z ) \bigr)
\bigl( \mu_d m_y K_h (\partial_y - z_y \partial_z ) \bigr)
%% + \partial_z \mu_d K \partial_z
+ \partial_z \mu_d K_v \partial_z
\bigr] q.
\label{scalar-disp-phys}
\end{align}
\subsubsection{Spatial Discretization}
Using the definition of the stress tensor, the spatial discretization of the
ARW physical-space diffusion operators for the horizontal and vertical
momentum equations
\eqref{u-disp-phys} - \eqref{w-disp-phys} are
%
\begin{align}
\partial_t U &= ...\,\,
- {\overline{m_x}}^x \bigl[ \delta_x \tau_{11} + \delta_y \tau_{12}
- \delta_z
( z_x {\overline{\tau_{11}}}^{x\eta} + {\overline {z_y}}^{xy}
{\overline{\tau_{12}}}^{y\eta}) \bigr]
-\delta_z \tau_{13}
\notag \\
%
\partial_t V &= ...\,\,
- {\overline{m_y}}^y \bigl[ \delta_y \tau_{22} + \delta_x \tau_{12}
- \delta_z
( z_y {\overline{\tau_{22}}}^{y\eta} + {\overline {z_x}}^{xy}
{\overline{\tau_{12}}}^{x\eta}) \bigr]
-\delta_z \tau_{23}
\notag \\
%
\partial_t W &= ...\,\,
- m_x \bigl[ \delta_x \tau_{13} + \delta_y \tau_{23}
- \delta_z (
{\overline {z_x}}^{x\eta} {\overline{\tau_{13}}}^{x\eta}
+{\overline {z_y}}^{y\eta} {\overline{\tau_{23}}}^{y\eta}
)
\bigr]
- \delta_z \tau_{33}.
\notag
\end{align}
%
\noindent
The discrete forms of the stress tensor and deformation tensor are
\noindent
%
\begin{align}
\tau_{11} &= -\mu_d K_h D_{11}
\notag \\
%
\tau_{22} &= -\mu_d K_h D_{22}
\notag \\
%
\tau_{33} &= -\mu_d K_v D_{33}
\notag \\
%
\tau_{12} &= -\overline {\mu_d}^{xy}
\overline {K_h}^{xy} D_{12}
\notag \\
%
\tau_{13} &= -\overline {\mu_d}^{x}
\overline {K_v}^{x\eta} D_{13}
\notag \\
%
\tau_{23} &= -\overline {\mu_d}^{y}
\overline {K_v}^{y\eta} D_{23},
\notag
%
\end{align}
%
\noindent
and
%
\begin{align}
D_{11} &= 2 \, m_x m_y \bigl[ \delta_x ({\overline {m_y^{-1}}}^x u)
- {\overline{z_x}}^{x\eta} \delta_z ({\overline {m_y^{-1}}}^x u) \bigl]
\notag \\
%
D_{22} &= 2 \, m_x m_y \bigl[ \delta_y ({\overline {m_x^{-1}}}^y v)
- {\overline{z_y}}^{x\eta} \delta_z ({\overline {m_x^{-1}}}^y v) \bigl]
\notag \\
%
D_{33} &= 2 \, \delta_z w
\notag \\
%
D_{12} &= (\overline{m_x m_y}^{xy}) \biggl[
\delta_y ({\overline {m_y^{-1}}}^x u)
- {\overline{z_y}}^{x\eta}
\delta_z {\overline{({\overline {m_y^{-1}}}^x u)}^{y\eta}}
+ \delta_x ({\overline {m_x^{-1}}}^y v)
- {\overline{z_x}}^{y\eta}
\delta_z {\overline{({\overline {m_x^{-1}}}^y v)}^{x\eta}}
\biggl]
\notag \\
%
D_{13} &= m_x m_y \biggl[
\delta_x (m_y^{-1} w)
- z_x \delta_z \overline{(m^{-1} w)}^{x\eta}
\biggl]
+ \delta_z u
\notag \\
%
D_{23} &= m_x m_y \biggl[
\delta_y (m_y^{-1} w)
- z_y \delta_z \overline{(m_y^{-1} w)}^{y\eta}
\biggl]
+ \delta_z v.
\notag
%
\end{align}
\noindent
The spatial discretization for the scalar diffusion
\eqref{scalar-disp-phys} is
%
\begin{align}
\partial_t (\mu_d q) = ...\,\, &
+ m_x \bigl[
\delta_x \bigl({\overline \mu_d}^x H_1( q) \bigr)
- \mu_d \delta_z
\bigl(\overline{z_x}^x {\overline{H_1( q)}}^{x\eta} \bigr)
\bigr]
\notag \\
& + m_y \bigl[
\delta_y \bigl({\overline \mu_d}^y H_2( q) \bigr)
- \mu_d \delta_z
\bigl(\overline{z_y}^y {\overline{H_2( q)}}^{y\eta} \bigr)
\bigr]
\notag \\
& + \mu_d \delta_z \bigl({\overline{K_v}}^\eta \delta_z q \bigr),
\notag
\end{align}
%
\noindent
where
\begin{align}
H_1( q) &= \overline{m_x}^x {\overline{K_h}}^x \bigl(
\delta_x q - z_x \delta_z( {\overline{ q}}^{x\eta} )\bigr),
\notag \\
H_2( q) &= \overline{m_y}^y {\overline{K_h}}^y \bigl(
\delta_y q - z_y \delta_z( {\overline{ q}}^{y\eta} )\bigr).
\notag
\end{align}
\subsection{Computation of the Eddy Viscosities}
\label {eddy_section}
There are four options for determining the eddy viscosities $K_h$ and
$K_v$ in the ARW solver.
\subsubsection{External specification of $K_h$ and $K_v$}
Constant values for $K_h$ and $K_v$ can be input in the ARW namelist.
\subsubsection{$K_h$ determined from the horizontal deformation}
The horizontal eddy viscosity $K_h$ can be determined from the
horizontal deformation using a Smagorinsky first-order closure
approach. In this formulation, the eddy viscosity is defined
and discretized as
%
\begin{equation}
K_h = C_s^2 \, l^2 \biggl[
0.25(D_{11}-D_{22})^2 + {\overline{D_{12}^2}}^{xy}
\biggr]^{1 \over 2}.
\notag
\end{equation}
%
\noindent
The deformation tensor components have been defined in the previous
section. The length scale $l = (\Delta x \Delta y)^{1/2}$ and $C_s$ is
a constant with a typical value $C_s = 0.25$. For scalar mixing, the
eddy viscosity is divided by the turbulent Prandtl number $P_r$ that
typically has a value of 1/3 \citep{deardorff72}. This option is most
often used with a planetary boundary layer scheme that independently
handles the vertical mixing.
\subsubsection{3D Smagorinsky Closure}
The horizontal and vertical eddy viscosities can be determined using a
3D Smagorinsky turbulence closure. This closure specifies the
eddy viscosities as
\begin{equation}
K_{h,v} = C_s^2 \, l_{h,v}^2 \,\hbox{max}
\biggl[ 0., \bigl( D^2 - P_r^{-1} N^2 \bigr)^{1/2}\biggr],
\label{k_calc}
\end{equation}
%
\noindent
where
%
\begin{equation}
D^2 =
{1 \over 2} \biggl[
D^2_{11} +
D^2_{22} +
D^2_{33} \biggr] +
\bigl({{\overline{D_{12}}}^{xy}}\bigr)^2 +
\bigl({{\overline{D_{13}}}^{x\eta}}\bigr)^2 +
\bigl({{\overline{D_{23}}}^{y\eta}}\bigr)^2,
\notag
\end{equation}
%
\noindent
and $N$ is the Brunt-V\"ais\"al\"a frequency; the computation of $N$,
including moisture effects, is outlined in Section \ref{tke_section}.
Two options are available for calculating the mixing length $l_{h,v}$ in
%% \eqref{k_calc}. An isotropic length scale can be chosen where $l_{h,v}
%% = (\Delta x \Delta y \Delta z)^{1/3}$ and thus $K_h = K_v = K$. The
%% anisotropic option sets the horizontal mixing length $l_h = \sqrt{\Delta
\eqref{k_calc}. An isotropic length scale (appropriate for $\Delta x, \Delta y
\simeq \Delta z$) can be chosen where $l_{h,v} = (\Delta x \Delta y \Delta z)^{1/3}$
and thus $K_h = K_v = K$. The anisotropic option (appropriate for $\Delta x,
\Delta y >> \Delta z$) sets the horizontal mixing length $l_h = \sqrt{\Delta
x \Delta y}$ in the calculation of the horizontal eddy viscosity $K_h$
using \eqref{k_calc}, and $l_v = \Delta z$ for the calculation of the
vertical eddy viscosity $K_v$ using \eqref{k_calc}.
Additionally, the eddy viscosities
for scalar mixing are divided by the turbulent Prandtl number $P_r = 1/3$.
\subsubsection{Prognostic TKE Closure}
For the predicted turbulent kinetic energy option
(TKE; see section \ref{tke_section}), the eddy viscosities are
computed using
%
\begin{equation}
K_{h,v} = C_k l_{h,v}\, \sqrt{e},
\notag
\end{equation}
%
\noindent
where $e$ is the turbulent kinetic energy (a prognostic variable
in this scheme), $C_k$ is a constant (typically $0.15 < C_k < 0.25$),
and $l$ is a length scale.
If the isotropic mixing option is chosen,
%
\begin{align}
l_{h,v} & = \hbox{min}
\bigl[(\Delta x \Delta y \Delta z)^{1/3}, 0.76 \sqrt{e} / N\bigr]
\quad\quad\quad
\hbox{for } N^2 > 0,
\notag \\
l_{h,v} & = (\Delta x \Delta y \Delta z)^{1/3}
\,\,\,\,\,
\hphantom{hbox{min}\bigl[,0.76 \sqrt{e} / N\bigr]}
\hbox{for } N^2 \le 0
\notag
\end{align}
%
(see section \ref{tke_section} for the calculation of $N^2$).
Both the horizontal and vertical eddy viscosities are multiplied by an
inverse turbulent
Prandtl number $P_r^{-1} = 1 + 2l/(\Delta x \Delta y \Delta z)^{1/3}$ for
scalar mixing. In this case $(l_{cr} > \Delta x)$ the
horizontal and vertical eddy viscosities
are equivalent.
If the anisotropic mixing option is chosen,
then $l_h=\sqrt{\Delta x \Delta y}$ for the calculation of $K_h$.
For calculating $K_v$,
%
\begin{align} l_v &= \hbox{min}
\bigl[\Delta z, 0.76 \sqrt{e} / N\bigr]
\quad\quad\quad \hbox{for } N^2 > 0,
\notag \\
l_v &= \Delta z \hphantom{\hbox{min}
\bigl[, 0.76 \sqrt{e} / N\bigr]} \quad\quad\quad \hbox{for } N^2 \le 0.
\notag
\end{align}
%
\noindent
The eddy viscosity used for mixing scalars is divided by a
turbulent Prandtl number $P_r$.
The Prandtl number is 1/3 for the
horizontal eddy viscosity $K_h$,
and $P_r^{-1} = 1 + 2l/\Delta z$ for the
vertical eddy viscosity $K_v$.
\subsection{TKE equation for the 1.5 Order Turbulence Closure}
\label{tke_section}
The prognostic equation governing the evolution of the
turbulent kinetic energy $e$ is
%
\begin{equation}
\partial_t (\mu_d e) + (\nabla \cdot {\bf V} e )_\eta
= \mu_d (\hbox{ shear production } + \hbox{ buoyancy } + \hbox{ dissipation }).
\label{tke}
\end{equation}
%
\noindent
The time integration and the transport terms in \eqref{tke} are
integrated in the same manner as for other scalars (as described in
Chapter \ref{discretization_chap}). The right-hand side source and sink terms for $e$ are
given as follows.
\subsubsection{Shear Production}
The shear production term in \eqref{tke} can be written as
%
\begin{equation}
\hbox{shear production} = K_h D_{11}^2
+ K_h D_{22}^2
+ K_v D_{33}^2
+ K_h {\overline{D_{12}^2}}^{xy}
+ K_v {\overline{D_{13}^2}}^{x\eta}
+ K_v {\overline{D_{23}^2}}^{y\eta}.
\notag
\end{equation}
\subsubsection{Buoyancy}
The buoyancy term in the TKE equation \eqref{tke} is written as
%
\begin{equation}
\hbox{ buoyancy} = - K_v N^2,
\notag
\end{equation}
%
\noindent
where the Brunt-V\"ais\"al\"a frequency $N$ is computed using either
the formula for a moist saturated or unsaturated environment:
%
\begin{alignat}{2}
%% N^2 & = g \biggl[A {\partial \theta_e \over \partial z}
N^2 & = g \bigl[A {\partial_z \theta_e }
%% - {\partial q_w \over \partial z} \biggr] & \qquad
- {\partial_z q_w } \bigr] & \qquad
%% & \hbox{if $q_v \ge q_s$ or $q_c \ge 0.01$ g/Kg;} \notag \\
& \hbox{if $q_v \ge q_{vs}$ or $q_c \ge 0.01$ g/Kg;} \notag \\
%% N^2 & = g \biggl[{1 \over \theta}{\partial \theta \over \partial z}
N^2 & = g \biggl[{1 \over \theta}{\partial_z \theta}
%% + 1.61 {\partial q_v \over \partial z} - {\partial q_w \over \partial z}
+ 1.61 {\partial_z q_v } - {\partial_z q_w }
\biggr]
& \qquad
%% & \hbox{if $q_v < q_s$ or $q_c < 0.01$ g/Kg}.
& \hbox{if $q_v < q_{vs}$ or $q_c < 0.01$ g/Kg}.
\notag
\end{alignat}
%
\noindent
The coefficient $A$ is defined as
%
\begin{equation}
A = \theta^{-1}
{ 1 + {1.61\epsilon L q_v \over R_d T} \over
1 + {\epsilon L^2 q_v \over C_pR_v T^2} },
\notag
\end{equation}
%
\noindent
where $q_w$ represents the total water (vapor + all liquid species
+ all ice species), $L$ is the latent heat of condensation and
%% $\epsilon$ is the molecular weight of water over the molecular weight of
$\epsilon$ is the ratio of the molecular weight of water vapor to the molecular weight of
dry air. $\theta_e$ is the equivalent potential temperature and is
defined as
%
\begin{equation}
%% \theta_e = \theta \biggl(1 + {\epsilon L q_{vs} \over C_p T} \biggr),
\theta_e = \theta \biggl(1 + { L q_{vs} \over C_p T} \biggr),
\notag
\end{equation}
%
\noindent
where $q_{vs}$ is the saturation vapor mixing ratio.
\subsubsection{Dissipation}
The dissipation term in \eqref{tke} is
%
\begin{equation}
\hbox{dissipation} = - {Ce^{3/2} \over l},
\notag
\end{equation}
%
\noindent
where
%
\begin{equation}
C = 1.9 \, C_k + { (0.93 - 1.9 \, C_k)\, l \over \Delta s},
\notag
\end{equation}
%
\noindent
$\Delta s = (\Delta x \Delta y \Delta z)^{1/3}$,
and
%
\begin{equation}
l = min\bigl[(\Delta x \Delta y \Delta z)^{1/3}, 0.76 \sqrt{e}/N\bigr].
\notag
\end{equation}
\subsection{Sixth-Order Spatial Filter on Coordinate Surfaces}
A sixth order spatial filter is available that is applied on horizontal
coordinate surfaces.
The diffusion scheme is that proposed by \cite{xue.2000}. Its application
in the ARW is described by \cite{knievel.et.al.2007}. The filter can be
expressed as
%
\begin{equation}
\partial_t (\mu_d a) = ... {\beta \, 2^{-6} \over 2 \Delta t}
\left[ \Delta x^6 \delta_x (\overline{\mu_d}^x F_x) + \Delta y^6 \delta_y (\overline{\mu_d}^y F_y)\right]
\label{sixth_order_diffusion}
\end{equation}
%
\noindent
The diffusive fluxes $F_x = \delta_x^5 (a)$ and $F_y = \delta_y^5 (a)$.
$\beta$ is a user-specified filtering coefficient representing the
damping applied to $2\Delta$ waves for each filter application.
The user can choose to enforce monotonicity in the filtering. In the
monotonic option, the diffusive fluxes are set to zero if up-gradient
diffusion is indicated -- $F_x = 0$ if $F_x \, \delta_x(a) < 0$ and $F_y
= 0$ if $F_y \, \delta_y(a) < 0$. Note that the filter is applied in
computational space; map factors are not taken into account
and the filter parameter $\beta$ is dimensionless. Thus, the filter
scales with the timestep and gridsize and it does not conserve scalar
mass. This explicit diffusion acts on all three components of wind,
potential temperature, all moisture variables and passive scalars, and
subgrid turbulence kinetic energy. Further details can be found in
\cite{knievel.et.al.2007}.
%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% model filters that are not turbulence based
%
%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Filters for the Time-split RK3 scheme}
Three filters are used in the ARW time-split RK3
scheme apart from those in the model physics: three-dimensional
divergence damping (an acoustic model filter); an external-mode filter
that damps vertically-integrated horizontal divergence; and off-centering
of the vertically implicit integration of the vertical momentum
equation and geopotential equation. Each of these is described in the
following sections.
\subsection{Three-Dimensional Divergence Damping}
The damping of the full mass divergence is a filter for acoustic
modes in the ARW solver. This 3D mass divergence damping is described
in \citet{skamarock92}. The filtering is accomplished by
forward weighting the pressure update in the acoustic step loop
described in Section \ref{full_time_split_integration}, step (6). The linearized equation of
state \eqref{p-linear} is used to diagnose the pressure at the new time $\tau$
after the $U''$, $V''$, $\mu_d''$, and $\Theta''$ have
been advanced. Divergence damping consists of using a modified pressure
in the computation of the pressure gradient terms in the horizontal
momentum equations in the acoustic steps (Equations \eqref{u-small-step}
and \eqref{v-small-step}). Denoting the updated value as $p^\tau$,
the modified pressure $p^{*\tau}$ used in \eqref{u-small-step}
and \eqref{v-small-step}
can be written as
%
\begin{equation}
p^{*\tau} =
{p}^{\tau} + \gamma_d \bigl(
{p}^{\tau} -
{p}^{\tau - \Delta \tau}
\bigr),
\end{equation}
%
\noindent
where $\gamma_d$ is the damping coefficient.
This modification is equivalent to inserting a horizontal
diffusion term into the equation for the 3D mass divergence,
hence the name {\em divergence damping}.
A divergence damping coefficient $\gamma_d = 0.1$ is
typically used in the ARW
applications, independent of time step or grid size.
\subsection{External Mode Filter}
The external modes in the solution are damped by filtering
the vertically-integrated horizontal divergence.
This damping is accomplished by
adding a term to the horizontal momentum equations. The additional
term added to \eqref{u-small-step} and \eqref{v-small-step} are
%
\begin{equation}
\delta_\tau U'' = ... \,\,
- \gamma_e \delta_x (\delta_{\tau-\Delta \tau} \mu_d'')
\end{equation}
\noindent
and
\begin{equation}
\delta_\tau V'' = ... \,\,
- \gamma_e \delta_y (\delta_{\tau-\Delta \tau} \mu_d'').
\end{equation}
%
\noindent
The quantity $\delta_{\tau - \Delta \tau} \mu $ is the vertically-integrated
mass divergence (i.e., \eqref{omega}) from the previous
acoustic step (that is computed using
the time $\tau$ values of $U$ and $V$), and
$\gamma_e$ is the external mode damping coefficient. An external mode
damping coefficient $\gamma_e = \beta{\Delta x^2\over \Delta t}$,
$\beta = 0.01$, is typically used in the ARW
applications, independent of time step or grid size.
\subsection{Semi-Implicit Acoustic Step Off-centering}
\label{offcentering}
Forward-in-time weighting of the vertically-implicit
acoustic-time-step terms damps instabilities associated
vertically-propagating sound waves. The forward weighting also damps
instabilities associated with sloping model levels and horizontally
propagating sound waves
\citep[see][]{durran_klemp83, dudhia95}. The off-centering
is accomplished by using a positive (non-zero) coefficient $\beta$
\eqref{avg-operator} in the acoustic time-step vertical momentum
equation \eqref{w-small-step} and geopotential equation
\eqref{geo-small-step}. An off-centering coefficient $\beta = 0.1$ is
typically used in the ARW applications, independent of time step or
grid size.
\section{Formulations for Gravity Wave Absorbing Layers}
There are three formulations for absorbing vertically-propagating
gravity waves so as to prevent unphysical wave reflection off the
domain upper boundary from contaminating ARW solutions.
\subsection{Absorbing Layer Using Spatial Filtering}
\label{absorbing_layer_spatial}
This formulation of the absorbing layer increases the second-order
horizontal and vertical eddy viscosities in the absorbing layer using
the following formulation:
%
\begin{equation}
K_{dh} = {\Delta x^2\over \Delta t} \gamma_g
\cos \biggl({\pi \over 2} \,{z_{top} - z \over z_{d}} \biggr),
\notag
\end{equation}
%
\noindent
and
%
\begin{equation}
K_{dv} = {\Delta z^2\over \Delta t} \gamma_g
\cos \biggl({\pi \over 2} \, {z_{top} - z \over z_{d}} \biggr).
\notag
\end{equation}
%
\noindent
Here $\gamma_g$ is a user-specified damping coefficient, $z_{top}$
is the height of the model top for a particular grid column,
$z_d$ is the depth of the damping layer (from the model top),
and $K_{dh}$ and $K_{dv}$ are the horizontal and vertical
eddy viscosities for the wave absorbing layer. If other
spatial filters are being used, then the eddy viscosities
that are used for the second-order horizontal and vertical
eddy viscosities are the
maximum of ($K_h$, $K_{dh}$) and ($K_v$, $K_{dv}$).
The effect of this filter on gravity waves is discussed in
\citet{klemp_and_lilly78}, where guidance on the choice of
the damping coefficient $\gamma_g$ can also be found.
\subsection{Implicit Rayleigh Damping for the Vertical Velocity}
\label{rayleigh-w}
Implicitly damping the vertical velocity within the implicit solution
algorithm for the vertically propagating acoustic modes has been found
to be a very effective and robust absorbing layer formulation by
\citet{klemp_et_al_2008}. We recommend its use in both large-scale and
small-scale applications, and in idealized and real-data applications.
It has proven more effective than the spatial-filter-based absorbing
layer described in Section \ref{absorbing_layer_spatial}, and it is more
effective and more generally applicable than traditional Rayleigh
damping because of its implicit nature and the fact that it does not
need a reference state. This formulation has been introduced in WRFV3.
It can only be used with the nonhydrostatic dynamics option.
In the vertically-implicit solution procedure for $W''^{\tau+\Delta
\tau}$ and $\phi''^{\tau+\Delta \tau}$ in the acoustic step (step 5 in
Figure \ref{time_integration_figure}), equation \eqref{geo-small-step}
is used to eliminate $\phi''^{\tau+\Delta \tau}$ from
\eqref{w-small-step} after which the tridiagonal equation in the
vertical direction for
$W''^{\tau+\Delta \tau}$ is solved. Afterwards $\phi''^{\tau+\Delta \tau}$ is
recovered using \eqref{geo-small-step}. In the solution procedure that
includes the implicit Rayleigh damping for $W$, after the tridiagonal
equation for $W''$ %$W''^{\tau+\Delta \tau}$
is solved and before the
geopotential $\phi$ is updated, the implicit Rayleigh damping is
included by calculating $W''^{\tau+\Delta \tau}$ using
%
\begin{equation}
W''^{\tau+\Delta \tau} = \tilde{W}''^{\tau+\Delta \tau}
-\tau(z) \Delta \tau W''^{\tau+\Delta \tau}
\label{w-rayleigh}
\end{equation}
%
where $\tilde{W}''^{\tau+\Delta \tau}$ is the solution to
\eqref{w-small-step}. The geopotential is then updated as usual using
\eqref{geo-small-step} with the updated damped vertical velocity from
\eqref{w-rayleigh}.
The perturbation pressure and specific volume
are computed as before using \eqref{p-linear} and \eqref{small-hydro}.
The variable $\tau(z)$ defines the vertical structure of the damping
layer, and has a form similar to the Rayleigh damper in
\citet{durran_klemp83} and also used in the traditional Rayleigh damping
formulation discussed in Section \ref{traditional-rayleigh}
%
\[ \tau (z) = \left\{ \begin{array}{cc}
\gamma_r\sin^2 \left[ \frac{\pi}{2}
\left( 1 - \frac{z_{top}-z}{z_d} \right) \right] &
\mbox{for $z \geq (z_{top}-z_d)$};\\
0 & \mbox{otherwise}, \end{array} \right. \]
%
where $\gamma_r$ is a user specified damping coeficient, $z_{top}$ is
the height of the model top for a particular grid column, and $z_d$ is
the depth of the damping layer (from the model top). A typical value
for the damping coefficient for this formulation is
$\gamma_r = 0.2 \,s^{-1}$ ($\sim 10N$ for typical stratospheric values of
the Brunt-V\"ais\"all\"a frequency).
A complete
analysis of this filter can be found in \citet{klemp_et_al_2008}.
\subsection{Traditional Rayleigh Damping Layer}
\label{traditional-rayleigh}
A traditional Rayleigh damping layer is also available in the ARW solver. This
scheme applies a tendency to $u$, $v$, $w$, and $\theta$ to gradually
relax the variable back to a predetermined reference state value,
%
\begin{eqnarray*}
%% \frac{\partial u }{\partial t} & = & -\tau (z) \left( u - \overline{u} \right) ,\\
%% \frac{\partial v }{\partial t} & = & -\tau (z) \left( v - \overline{v} \right) ,\\
%% \frac{\partial w }{\partial t} & = & -\tau (z) w ,\\
%% \frac{\partial \theta}{\partial t} & = & -\tau (z) \left( \theta - \overline{\theta} \right).
{\partial_t u } & = & -\tau (z) \left( u - \overline{u} \right) ,\\
{\partial_t v } & = & -\tau (z) \left( v - \overline{v} \right) ,\\
{\partial_t w } & = & -\tau (z) w ,\\
{\partial_t \theta} & = & -\tau (z) \left( \theta - \overline{\theta} \right).
\end{eqnarray*}
%
Overbars indicate the reference state fields, which are functions of $z$
only and are typically defined as the initial horizontally homogeneous
fields in idealized simulations. The reference state vertical velocity
is assumed to be zero. The vertical structure of the damping layer is
the same as that used for the implicit vertical velocity damping
described in Section \ref{rayleigh-w}.
Because the model surfaces change height with time in the ARW solver, the
reference state values at each grid point need to be recalculated at
every time step. Thus, a linear interpolation scheme is used to
calculate updated reference state values based on the height of the
model levels at each time step.
The effect of this filter on gravity waves is discussed in
\citet{klemp_and_lilly78}, where guidance on the choice of
the damping coefficeint $\gamma_r$ can also be found.
\section{Other Damping}
\subsection{Vertical-Velocity Damping}
This is also called $w$-damping.
In semi-operational or operational NWP applications,
the model robustness can be improved by detecting locations where the
vertical motion approaches the limiting Courant number for stability,
and applying a Rayleigh damping term in the vertical momentum equation to
stabilize the motion. This term is non-physical and should
only be used in the situation where many, or long, model runs are being
done, and there is no option for a re-run with a shorter time-step if a
failure occurs due to an excessively strong updraft. This might be the
case, for example, in an operational setting where real-time forecasts
have to be produced on time to be useful. However, if this term activates
frequently, consideration should be given to reducing the model time-step.
The term is calculated from
%
\begin{equation}