forked from carpedm20/ENAS-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
trainer.py
702 lines (552 loc) · 25.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
"""The module for training ENAS."""
import contextlib
import glob
import math
import os
import numpy as np
import scipy.signal
from tensorboard import TensorBoard
import torch
from torch import nn
import torch.nn.parallel
from torch.autograd import Variable
import models
import utils
logger = utils.get_logger()
def _apply_penalties(extra_out, args):
"""Based on `args`, optionally adds regularization penalty terms for
activation regularization, temporal activation regularization and/or hidden
state norm stabilization.
Args:
extra_out[*]:
dropped: Post-dropout activations.
hiddens: All hidden states for a batch of sequences.
raw: Pre-dropout activations.
Returns:
The penalty term associated with all of the enabled regularizations.
See:
Regularizing and Optimizing LSTM Language Models (Merity et al., 2017)
Regularizing RNNs by Stabilizing Activations (Krueger & Memsevic, 2016)
"""
penalty = 0
# Activation regularization.
if args.activation_regularization:
penalty += (args.activation_regularization_amount *
extra_out['dropped'].pow(2).mean())
# Temporal activation regularization (slowness)
if args.temporal_activation_regularization:
raw = extra_out['raw']
penalty += (args.temporal_activation_regularization_amount *
(raw[1:] - raw[:-1]).pow(2).mean())
# Norm stabilizer regularization
if args.norm_stabilizer_regularization:
penalty += (args.norm_stabilizer_regularization_amount *
(extra_out['hiddens'].norm(p=2, dim=-1) -
args.norm_stabilizer_fixed_point).pow(2).mean())
return penalty
def _check_max_hidden(abs_max_hidden_norm, h1tohT):
"""Debugging function that checks if `h1tohT` contains a new largest hidden
state (as measured by L2 norm), and returns the (potentially updated)
largest hidden state L2 norm.
"""
new_abs_max_hidden_norm = utils.to_item(
h1tohT.norm(p=2, dim=-1).data.max())
if new_abs_max_hidden_norm > abs_max_hidden_norm:
abs_max_hidden_norm = new_abs_max_hidden_norm
logger.info(f'max hidden {abs_max_hidden_norm}')
return abs_max_hidden_norm
def discount(x, amount):
return scipy.signal.lfilter([1], [1, -amount], x[::-1], axis=0)[::-1]
def _get_optimizer(name):
if name.lower() == 'sgd':
optim = torch.optim.SGD
elif name.lower() == 'adam':
optim = torch.optim.Adam
return optim
def _get_no_grad_ctx_mgr():
"""Returns a the `torch.no_grad` context manager for PyTorch version >=
0.4, or a no-op context manager otherwise.
"""
if float(torch.__version__[0:3]) >= 0.4:
return torch.no_grad()
return contextlib.suppress()
def _check_abs_max_grad(abs_max_grad, model):
"""Checks `model` for a new largest gradient for this epoch, in order to
track gradient explosions.
"""
finite_grads = [p.grad.data
for p in model.parameters()
if p.grad is not None]
new_max_grad = max([grad.max() for grad in finite_grads])
new_min_grad = min([grad.min() for grad in finite_grads])
new_abs_max_grad = max(new_max_grad, abs(new_min_grad))
if new_abs_max_grad > abs_max_grad:
logger.info(f'abs max grad {abs_max_grad}')
return new_abs_max_grad
return abs_max_grad
class Trainer(object):
"""A class to wrap training code."""
def __init__(self, args, dataset):
"""Constructor for training algorithm.
Args:
args: From command line, picked up by `argparse`.
dataset: Currently only `data.text.Corpus` is supported.
Initializes:
- Data: train, val and test.
- Model: shared and controller.
- Inference: optimizers for shared and controller parameters.
- Criticism: cross-entropy loss for training the shared model.
"""
self.args = args
self.controller_step = 0
self.cuda = args.cuda
self.dataset = dataset
self.epoch = 0
self.shared_step = 0
self.start_epoch = 0
logger.info('regularizing:')
for regularizer in [('activation regularization',
self.args.activation_regularization),
('temporal activation regularization',
self.args.temporal_activation_regularization),
('norm stabilizer regularization',
self.args.norm_stabilizer_regularization)]:
if regularizer[1]:
logger.info(f'{regularizer[0]}')
self.train_data = utils.batchify(dataset.train,
args.batch_size,
self.cuda)
# NOTE(brendan): The validation set data is batchified twice
# separately: once for computing rewards during the Train Controller
# phase (valid_data, batch size == 64), and once for evaluating ppl
# over the entire validation set (eval_data, batch size == 1)
self.valid_data = utils.batchify(dataset.valid,
args.batch_size,
self.cuda)
self.eval_data = utils.batchify(dataset.valid,
args.test_batch_size,
self.cuda)
self.test_data = utils.batchify(dataset.test,
args.test_batch_size,
self.cuda)
self.max_length = self.args.shared_rnn_max_length
if args.use_tensorboard:
self.tb = TensorBoard(args.model_dir)
else:
self.tb = None
self.build_model()
if self.args.load_path:
self.load_model()
shared_optimizer = _get_optimizer(self.args.shared_optim)
controller_optimizer = _get_optimizer(self.args.controller_optim)
self.shared_optim = shared_optimizer(
self.shared.parameters(),
lr=self.shared_lr,
weight_decay=self.args.shared_l2_reg)
self.controller_optim = controller_optimizer(
self.controller.parameters(),
lr=self.args.controller_lr)
self.ce = nn.CrossEntropyLoss()
def build_model(self):
"""Creates and initializes the shared and controller models."""
if self.args.network_type == 'rnn':
self.shared = models.RNN(self.args, self.dataset)
elif self.args.network_type == 'cnn':
self.shared = models.CNN(self.args, self.dataset)
else:
raise NotImplementedError(f'Network type '
f'`{self.args.network_type}` is not '
f'defined')
self.controller = models.Controller(self.args)
if self.args.num_gpu == 1:
self.shared.cuda()
self.controller.cuda()
elif self.args.num_gpu > 1:
raise NotImplementedError('`num_gpu > 1` is in progress')
def train(self):
"""Cycles through alternately training the shared parameters and the
controller, as described in Section 2.2, Training ENAS and Deriving
Architectures, of the paper.
From the paper (for Penn Treebank):
- In the first phase, shared parameters omega are trained for 400
steps, each on a minibatch of 64 examples.
- In the second phase, the controller's parameters are trained for 2000
steps.
"""
if self.args.shared_initial_step > 0:
self.train_shared(self.args.shared_initial_step)
self.train_controller()
for self.epoch in range(self.start_epoch, self.args.max_epoch):
# 1. Training the shared parameters omega of the child models
self.train_shared()
# 2. Training the controller parameters theta
self.train_controller()
if self.epoch % self.args.save_epoch == 0:
with _get_no_grad_ctx_mgr():
best_dag = self.derive()
self.evaluate(self.eval_data,
best_dag,
'val_best',
max_num=self.args.batch_size*100)
self.save_model()
if self.epoch >= self.args.shared_decay_after:
utils.update_lr(self.shared_optim, self.shared_lr)
def get_loss(self, inputs, targets, hidden, dags):
"""Computes the loss for the same batch for M models.
This amounts to an estimate of the loss, which is turned into an
estimate for the gradients of the shared model.
"""
if not isinstance(dags, list):
dags = [dags]
losses = []
hiddens = []
for dag in dags:
output, next_hidden, extra_out = self.shared(inputs,
dag,
hidden=hidden)
hiddens.append(next_hidden)
output_flat = output.view(-1, self.dataset.num_tokens)
sample_loss = (self.ce(output_flat, targets) /
self.args.shared_num_sample)
losses.append(sample_loss)
losses = torch.stack(losses)
# NOTE(brendan): When training the policy, use the expected value of
# the hidden states to pass to the next batch of model samples.
if len(dags) > 1:
hidden = torch.mean(torch.stack(hiddens), dim=0)
return losses, hidden, extra_out
def train_shared(self, max_step=None):
"""Train the language model for 400 steps of minibatches of 64
examples.
Args:
max_step: Used to run extra training steps as a warm-up.
BPTT is truncated at 35 timesteps.
For each weight update, gradients are estimated by sampling M models
from the fixed controller policy, and averaging their gradients
computed on a batch of training data.
"""
model = self.shared
model.train()
self.controller.eval()
hidden = self.shared.init_hidden(self.args.batch_size)
if max_step is None:
max_step = self.args.shared_max_step
else:
max_step = min(self.args.shared_max_step, max_step)
abs_max_grad = 0
abs_max_hidden_norm = 0
step = 0
raw_total_loss = 0
total_loss = 0
train_idx = 0
# NOTE(brendan): The - 1 - 1 here is because each example should
# include at least one (x_t, y_{t + 1}) sequence, since y_{t + 1} is
# predicted from x_t.
while train_idx < self.train_data.size(0) - 1 - 1:
bptt = self.max_length
if np.random.random() >= 0.95:
bptt /= 2.
seq_len = int(np.random.normal(bptt, 5))
seq_len = max(5, seq_len)
saved_lr = self.shared_optim.param_groups[0]['lr']
self.shared_optim.param_groups[0]['lr'] = saved_lr*seq_len/bptt
dags = self.controller.sample(self.args.shared_num_sample)
inputs, targets = self.get_batch(self.train_data,
train_idx,
seq_len)
loss, hidden, extra_out = self.get_loss(inputs,
targets,
hidden,
dags)
hidden = utils.detach(hidden)
raw_total_loss += loss.data.squeeze()
loss += _apply_penalties(extra_out, self.args)
# update
self.shared_optim.zero_grad()
loss.backward()
abs_max_hidden_norm = _check_max_hidden(abs_max_hidden_norm,
extra_out['hiddens'])
abs_max_grad = _check_abs_max_grad(abs_max_grad, model)
torch.nn.utils.clip_grad_norm(model.parameters(),
self.args.shared_grad_clip)
self.shared_optim.step()
total_loss += loss.data.squeeze()
self.shared_optim.param_groups[0]['lr'] = saved_lr
if ((step % self.args.log_step) == 0) and (step > 0):
self._summarize_shared_train(total_loss, raw_total_loss)
raw_total_loss = 0
total_loss = 0
step += 1
self.shared_step += 1
train_idx += seq_len
def get_reward(self, dag, hidden, valid_idx=None):
"""Computes the perplexity of a single sampled model on a minibatch of
validation data.
"""
if valid_idx:
valid_idx = 0
inputs, targets = self.get_batch(self.valid_data,
valid_idx,
self.max_length,
volatile=True)
valid_loss, hidden, _ = self.get_loss(inputs, targets, hidden, dag)
valid_ppl = torch.exp(valid_loss.data)
# TODO: we don't know reward_c
if self.args.ppl_square:
# TODO: but we do know reward_c=80 in the previous paper
R = self.args.reward_c / valid_ppl ** 2
else:
R = self.args.reward_c / valid_ppl
return R, hidden
def train_controller(self):
"""Fixes the shared parameters and updates the controller parameters.
The controller is updated with a score function gradient estimator
(i.e., REINFORCE), with the reward being c/valid_ppl, where valid_ppl
is computed on a minibatch of validation data.
A moving average baseline is used.
The controller is trained for 2000 steps per epoch (i.e.,
first (Train Shared) phase -> second (Train Controller) phase).
"""
model = self.controller
model.train()
self.shared.eval()
avg_reward_base = None
adv_history = []
entropy_history = []
reward_history = []
hidden = self.shared.init_hidden(self.args.batch_size)
total_loss = 0
valid_idx = 0
for step in range(self.args.controller_max_step):
# sample models
dags, log_probs, entropies = self.controller.sample(
batch_size=self.args.policy_batch_size, with_details=True)
# calculate reward
np_entropies = entropies.data.cpu().numpy()
# NOTE(brendan): No gradients should be backpropagated to the
# shared model during controller training, obviously.
with _get_no_grad_ctx_mgr():
rewards, hidden = self.get_reward(dags, hidden, valid_idx)
# discount
if 1 > self.args.discount > 0:
rewards = discount(rewards, self.args.discount)
mean_reward = rewards.mean()
reward_history.append(utils.to_item(mean_reward))
entropy_history.extend(np_entropies)
# moving average baseline
if model.baseline is None:
model.baseline = mean_reward
else:
decay = self.args.ema_baseline_decay
model.baseline = decay*model.baseline + (1 - decay)*mean_reward
adv = rewards - model.baseline
adv_history.append(utils.to_item(adv.mean()))
# policy loss
loss = -log_probs*utils.get_variable(adv.squeeze(),
self.cuda,
requires_grad=False)
# NOTE(brendan): Sum over the sequence length, and take the mean
# over the batch size.
loss = loss.sum(dim=-1).mean()
loss -= self.args.entropy_coeff * entropies.mean()
# update
self.controller_optim.zero_grad()
loss.backward()
if self.args.controller_grad_clip > 0:
torch.nn.utils.clip_grad_norm(model.parameters(),
self.args.controller_grad_clip)
self.controller_optim.step()
total_loss += utils.to_item(loss.data)
if ((step % self.args.log_step) == 0) and (step > 0):
self._summarize_controller_train(total_loss,
adv_history,
entropy_history,
reward_history,
avg_reward_base,
dags)
reward_history, adv_history, entropy_history = [], [], []
total_loss = 0
self.controller_step += 1
prev_valid_idx = valid_idx
valid_idx = ((valid_idx + self.max_length) %
(self.valid_data.size(0) - 1))
# NOTE(brendan): Whenever we wrap around to the beginning of the
# validation data, we reset the hidden states.
if prev_valid_idx > valid_idx:
hidden = self.shared.init_hidden(self.args.batch_size)
def evaluate(self, source, dag, name, batch_size=1, max_num=None):
"""Evaluate on the validation set.
NOTE(brendan): We should not be using the test set to develop the
algorithm (basic machine learning good practices).
"""
self.shared.eval()
self.controller.eval()
data = source[:max_num*self.max_length]
total_loss = 0
hidden = self.shared.init_hidden(batch_size)
pbar = range(0, data.size(0) - 1, self.max_length)
for count, idx in enumerate(pbar):
inputs, targets = self.get_batch(data, idx)
output, hidden, _ = self.shared(inputs, dag, hidden=hidden)
hidden = utils.detach(hidden)
output_flat = output.view(-1, self.dataset.num_tokens)
total_loss += len(inputs) * self.ce(output_flat, targets).data
ppl = math.exp(utils.to_item(total_loss) / (count + 1) / self.max_length)
val_loss = utils.to_item(total_loss) / len(data)
ppl = math.exp(val_loss)
self.tb.scalar_summary(f'eval/{name}_loss', val_loss, self.epoch)
self.tb.scalar_summary(f'eval/{name}_ppl', ppl, self.epoch)
logger.info(f'eval | loss: {val_loss:8.2f} | ppl: {ppl:8.2f}')
def derive(self, sample_num=None, valid_idx=0):
"""TODO(brendan): We are always deriving based on the very first batch
of validation data? This seems wrong...
"""
hidden = self.shared.init_hidden(self.args.batch_size)
if sample_num is None:
sample_num = self.args.derive_num_sample
dags, _, _ = self.controller.sample(sample_num, with_details=True)
max_R = 0
best_dag = None
for dag in dags:
R, _ = self.get_reward(dag, hidden, valid_idx)
if R.max() > max_R:
max_R = R.max()
best_dag = dag
logger.info(f'derive | max_R: {max_R:8.6f}')
fname = (f'{self.epoch:03d}-{self.controller_step:06d}-'
f'{max_R:6.4f}-best.png')
path = os.path.join(self.args.model_dir, 'networks', fname)
utils.draw_network(best_dag, path)
self.tb.image_summary('derive/best', [path], self.epoch)
return best_dag
@property
def shared_lr(self):
degree = max(self.epoch - self.args.shared_decay_after + 1, 0)
return self.args.shared_lr * (self.args.shared_decay ** degree)
@property
def controller_lr(self):
return self.args.controller_lr
def get_batch(self, source, idx, length=None, volatile=False):
# code from
# https://github.com/pytorch/examples/blob/master/word_language_model/main.py
length = min(length if length else self.max_length,
len(source) - 1 - idx)
data = Variable(source[idx:idx + length], volatile=volatile)
target = Variable(source[idx + 1:idx + 1 + length].view(-1),
volatile=volatile)
return data, target
@property
def shared_path(self):
return f'{self.args.model_dir}/shared_epoch{self.epoch}_step{self.shared_step}.pth'
@property
def controller_path(self):
return f'{self.args.model_dir}/controller_epoch{self.epoch}_step{self.controller_step}.pth'
def get_saved_models_info(self):
paths = glob.glob(os.path.join(self.args.model_dir, '*.pth'))
paths.sort()
def get_numbers(items, delimiter, idx, replace_word, must_contain=''):
return list(set([int(
name.split(delimiter)[idx].replace(replace_word, ''))
for name in basenames if must_contain in name]))
basenames = [os.path.basename(path.rsplit('.', 1)[0]) for path in paths]
epochs = get_numbers(basenames, '_', 1, 'epoch')
shared_steps = get_numbers(basenames, '_', 2, 'step', 'shared')
controller_steps = get_numbers(basenames, '_', 2, 'step', 'controller')
epochs.sort()
shared_steps.sort()
controller_steps.sort()
return epochs, shared_steps, controller_steps
def save_model(self):
torch.save(self.shared.state_dict(), self.shared_path)
logger.info(f'[*] SAVED: {self.shared_path}')
torch.save(self.controller.state_dict(), self.controller_path)
logger.info(f'[*] SAVED: {self.controller_path}')
epochs, shared_steps, controller_steps = self.get_saved_models_info()
for epoch in epochs[:-self.args.max_save_num]:
paths = glob.glob(
os.path.join(self.args.model_dir, f'*_epoch{epoch}_*.pth'))
for path in paths:
utils.remove_file(path)
def load_model(self):
epochs, shared_steps, controller_steps = self.get_saved_models_info()
if len(epochs) == 0:
logger.info(f'[!] No checkpoint found in {self.args.model_dir}...')
return
self.epoch = self.start_epoch = max(epochs)
self.shared_step = max(shared_steps)
self.controller_step = max(controller_steps)
if self.args.num_gpu == 0:
map_location = lambda storage, loc: storage
else:
map_location = None
self.shared.load_state_dict(
torch.load(self.shared_path, map_location=map_location))
logger.info(f'[*] LOADED: {self.shared_path}')
self.controller.load_state_dict(
torch.load(self.controller_path, map_location=map_location))
logger.info(f'[*] LOADED: {self.controller_path}')
def _summarize_controller_train(self,
total_loss,
adv_history,
entropy_history,
reward_history,
avg_reward_base,
dags):
"""Logs the controller's progress for this training epoch."""
cur_loss = total_loss / self.args.log_step
avg_adv = np.mean(adv_history)
avg_entropy = np.mean(entropy_history)
avg_reward = np.mean(reward_history)
if avg_reward_base is None:
avg_reward_base = avg_reward
logger.info(
f'| epoch {self.epoch:3d} | lr {self.controller_lr:.5f} '
f'| R {avg_reward:.5f} | entropy {avg_entropy:.4f} '
f'| loss {cur_loss:.5f}')
# Tensorboard
if self.tb is not None:
self.tb.scalar_summary('controller/loss',
cur_loss,
self.controller_step)
self.tb.scalar_summary('controller/reward',
avg_reward,
self.controller_step)
self.tb.scalar_summary('controller/reward-B_per_epoch',
avg_reward - avg_reward_base,
self.controller_step)
self.tb.scalar_summary('controller/entropy',
avg_entropy,
self.controller_step)
self.tb.scalar_summary('controller/adv',
avg_adv,
self.controller_step)
paths = []
for dag in dags:
fname = (f'{self.epoch:03d}-{self.controller_step:06d}-'
f'{avg_reward:6.4f}.png')
path = os.path.join(self.args.model_dir, 'networks', fname)
utils.draw_network(dag, path)
paths.append(path)
self.tb.image_summary('controller/sample',
paths,
self.controller_step)
def _summarize_shared_train(self, total_loss, raw_total_loss):
"""Logs a set of training steps."""
cur_loss = utils.to_item(total_loss) / self.args.log_step
# NOTE(brendan): The raw loss, without adding in the activation
# regularization terms, should be used to compute ppl.
cur_raw_loss = utils.to_item(raw_total_loss) / self.args.log_step
ppl = math.exp(cur_raw_loss)
logger.info(f'| epoch {self.epoch:3d} '
f'| lr {self.shared_lr:4.2f} '
f'| raw loss {cur_raw_loss:.2f} '
f'| loss {cur_loss:.2f} '
f'| ppl {ppl:8.2f}')
# Tensorboard
if self.tb is not None:
self.tb.scalar_summary('shared/loss',
cur_loss,
self.shared_step)
self.tb.scalar_summary('shared/perplexity',
ppl,
self.shared_step)