-
Notifications
You must be signed in to change notification settings - Fork 109
/
training.py
executable file
·334 lines (274 loc) · 14.1 KB
/
training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
#!/usr/bin/env python3
from config import get_logging_config, args, train_dir
from config import config as net_config
import time
import os
import sys
import socket
import logging
import logging.config
import subprocess
import tensorflow as tf
import numpy as np
import matplotlib
matplotlib.use('Agg')
from vgg import VGG
from resnet import ResNet
from utils import print_variables
from utils_tf import yxyx_to_xywh, data_augmentation
from datasets import get_dataset
from boxer import PriorBoxGrid
slim = tf.contrib.slim
streaming_mean_iou = tf.contrib.metrics.streaming_mean_iou
logging.config.dictConfig(get_logging_config(args.run_name))
log = logging.getLogger()
def objective(location, confidence, refine_ph, classes_ph,
pos_mask, seg_logits, seg_gt, dataset, config):
def smooth_l1(x, y):
abs_diff = tf.abs(x-y)
return tf.reduce_sum(tf.where(abs_diff < 1,
0.5*abs_diff*abs_diff,
abs_diff - 0.5),
1)
def segmentation_loss(seg_logits, seg_gt, config):
mask = seg_gt <= dataset.num_classes
seg_logits = tf.boolean_mask(seg_logits, mask)
seg_gt = tf.boolean_mask(seg_gt, mask)
seg_predictions = tf.argmax(seg_logits, axis=1)
seg_loss_local = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=seg_logits,
labels=seg_gt)
seg_loss = tf.reduce_mean(seg_loss_local)
tf.summary.scalar('loss/segmentation', seg_loss)
mean_iou, update_mean_iou = streaming_mean_iou(seg_predictions, seg_gt,
dataset.num_classes)
tf.summary.scalar('accuracy/mean_iou', mean_iou)
return seg_loss, mean_iou, update_mean_iou
def detection_loss(location, confidence, refine_ph, classes_ph, pos_mask):
neg_mask = tf.logical_not(pos_mask)
number_of_positives = tf.reduce_sum(tf.to_int32(pos_mask))
true_number_of_negatives = tf.minimum(3 * number_of_positives,
tf.shape(pos_mask)[1] - number_of_positives)
# max is to avoid the case where no positive boxes were sampled
number_of_negatives = tf.maximum(1, true_number_of_negatives)
num_pos_float = tf.to_float(tf.maximum(1, number_of_positives))
normalizer = tf.to_float(tf.add(number_of_positives, number_of_negatives))
tf.summary.scalar('batch/size', normalizer)
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=confidence,
labels=classes_ph)
pos_class_loss = tf.reduce_sum(tf.boolean_mask(cross_entropy, pos_mask))
tf.summary.scalar('loss/class_pos', pos_class_loss / num_pos_float)
top_k_worst, top_k_inds = tf.nn.top_k(tf.boolean_mask(cross_entropy, neg_mask),
number_of_negatives)
# multiplication is to avoid the case where no positive boxes were sampled
neg_class_loss = tf.reduce_sum(top_k_worst) * \
tf.cast(tf.greater(true_number_of_negatives, 0), tf.float32)
class_loss = (neg_class_loss + pos_class_loss) / num_pos_float
tf.summary.scalar('loss/class_neg', neg_class_loss / tf.to_float(number_of_negatives))
tf.summary.scalar('loss/class', class_loss)
# cond is to avoid the case where no positive boxes were sampled
bbox_loss = tf.cond(tf.equal(tf.reduce_sum(tf.cast(pos_mask, tf.int32)), 0),
lambda: 0.0,
lambda: tf.reduce_mean(smooth_l1(tf.boolean_mask(location, pos_mask),
tf.boolean_mask(refine_ph, pos_mask))))
tf.summary.scalar('loss/bbox', bbox_loss)
inferred_class = tf.cast(tf.argmax(confidence, 2), tf.int32)
positive_matches = tf.equal(tf.boolean_mask(inferred_class, pos_mask),
tf.boolean_mask(classes_ph, pos_mask))
hard_matches = tf.equal(tf.boolean_mask(inferred_class, neg_mask),
tf.boolean_mask(classes_ph, neg_mask))
hard_matches = tf.gather(hard_matches, top_k_inds)
train_acc = ((tf.reduce_sum(tf.to_float(positive_matches)) +
tf.reduce_sum(tf.to_float(hard_matches))) / normalizer)
tf.summary.scalar('accuracy/train', train_acc)
recognized_class = tf.argmax(confidence, 2)
tp = tf.reduce_sum(tf.to_float(tf.logical_and(recognized_class > 0, pos_mask)))
fp = tf.reduce_sum(tf.to_float(tf.logical_and(recognized_class > 0, neg_mask)))
fn = tf.reduce_sum(tf.to_float(tf.logical_and(tf.equal(recognized_class, 0), pos_mask)))
precision = tp / (tp + fp)
recall = tp / (tp + fn)
f1 = 2*(precision * recall)/(precision + recall)
tf.summary.scalar('metrics/train/precision', precision)
tf.summary.scalar('metrics/train/recall', recall)
tf.summary.scalar('metrics/train/f1', f1)
return class_loss, bbox_loss, train_acc, number_of_positives
the_loss = 0
train_acc = tf.constant(1)
mean_iou = tf.constant(1)
update_mean_iou = tf.constant(1)
if args.segment:
seg_loss, mean_iou, update_mean_iou = segmentation_loss(seg_logits, seg_gt, config)
the_loss += seg_loss
if args.detect:
class_loss, bbox_loss, train_acc, number_of_positives =\
detection_loss(location, confidence, refine_ph, classes_ph, pos_mask)
det_loss = class_loss + bbox_loss
the_loss += det_loss
regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
wd_loss = tf.add_n(regularization_losses)
tf.summary.scalar('loss/weight_decay', wd_loss)
the_loss += wd_loss
tf.summary.scalar('loss/full', the_loss)
return the_loss, train_acc, mean_iou, update_mean_iou
def extract_batch(dataset, config):
with tf.device("/cpu:0"):
bboxer = PriorBoxGrid(config)
data_provider = slim.dataset_data_provider.DatasetDataProvider(
dataset, num_readers=2,
common_queue_capacity=512, common_queue_min=32)
if args.segment:
im, bbox, gt, seg = data_provider.get(['image', 'object/bbox', 'object/label',
'image/segmentation'])
else:
im, bbox, gt = data_provider.get(['image', 'object/bbox', 'object/label'])
seg = tf.expand_dims(tf.zeros(tf.shape(im)[:2]), 2)
im = tf.to_float(im)/255
bbox = yxyx_to_xywh(tf.clip_by_value(bbox, 0.0, 1.0))
im, bbox, gt, seg = data_augmentation(im, bbox, gt, seg, config)
inds, cats, refine = bboxer.encode_gt_tf(bbox, gt)
return tf.train.shuffle_batch([im, inds, refine, cats, seg],
args.batch_size, 2048, 64, num_threads=4)
def train(dataset, net, config):
image_ph, inds_ph, refine_ph, classes_ph, seg_gt = extract_batch(dataset, config)
net.create_trunk(image_ph)
if args.detect:
net.create_multibox_head(dataset.num_classes)
confidence = net.outputs['confidence']
location = net.outputs['location']
tf.summary.histogram('location', location)
tf.summary.histogram('confidence', confidence)
else:
location, confidence = None, None
if args.segment:
net.create_segmentation_head(dataset.num_classes)
seg_logits = net.outputs['segmentation']
tf.summary.histogram('segmentation', seg_logits)
else:
seg_logits = None
loss, train_acc, mean_iou, update_mean_iou = objective(location, confidence, refine_ph,
classes_ph,inds_ph, seg_logits,
seg_gt, dataset, config)
### setting up the learning rate ###
global_step = slim.get_or_create_global_step()
learning_rate = args.learning_rate
learning_rates = [args.warmup_lr, learning_rate]
steps = [args.warmup_step]
if len(args.lr_decay) > 0:
for i, step in enumerate(args.lr_decay):
steps.append(step)
learning_rates.append(learning_rate*10**(-i-1))
learning_rate = tf.train.piecewise_constant(tf.to_int32(global_step),
steps, learning_rates)
tf.summary.scalar('learning_rate', learning_rate)
#######
if args.optimizer == 'adam':
opt = tf.train.AdamOptimizer(learning_rate)
elif args.optimizer == 'nesterov':
opt = tf.train.MomentumOptimizer(learning_rate, 0.9, use_nesterov=True)
else:
raise ValueError
train_vars = tf.trainable_variables()
print_variables('train', train_vars)
train_op = slim.learning.create_train_op(
loss, opt,
global_step=global_step,
variables_to_train=train_vars,
summarize_gradients=True)
summary_op = tf.summary.merge_all()
saver = tf.train.Saver(tf.global_variables(), max_to_keep=1000, keep_checkpoint_every_n_hours=1)
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
log_device_placement=False)) as sess:
summary_writer = tf.summary.FileWriter(train_dir, sess.graph)
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
if args.random_trunk_init:
print("Training from scratch")
else:
init_assign_op, init_feed_dict, init_vars = net.get_imagenet_init(opt)
print_variables('init from ImageNet', init_vars)
sess.run(init_assign_op, feed_dict=init_feed_dict)
ckpt = tf.train.get_checkpoint_state(train_dir)
if ckpt and ckpt.model_checkpoint_path:
if args.ckpt == 0:
ckpt_to_restore = ckpt.model_checkpoint_path
else:
ckpt_to_restore = train_dir+'/model.ckpt-%i' % args.ckpt
log.info("Restoring model %s..." % ckpt_to_restore)
saver.restore(sess, ckpt_to_restore)
starting_step = sess.run(global_step)
tf.get_default_graph().finalize()
summary_writer = tf.summary.FileWriter(train_dir, sess.graph)
log.info("Launching prefetch threads")
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
log.info("Starting training...")
for step in range(starting_step, args.max_iterations+1):
start_time = time.time()
try:
train_loss, acc, iou, _, lr = sess.run([train_op, train_acc, mean_iou,
update_mean_iou, learning_rate])
except (tf.errors.OutOfRangeError, tf.errors.CancelledError):
break
duration = time.time() - start_time
num_examples_per_step = args.batch_size
examples_per_sec = num_examples_per_step / duration
sec_per_batch = float(duration)
format_str = ('step %d, loss = %.2f, acc = %.2f, iou=%f, lr=%.3f (%.1f examples/sec; %.3f '
'sec/batch)')
log.info(format_str % (step, train_loss, acc, iou, -np.log10(lr),
examples_per_sec, sec_per_batch))
if step % 100 == 0:
summary_str = sess.run(summary_op)
summary_writer.add_summary(summary_str, step)
if step % 1000 == 0 and step > 0:
summary_writer.flush()
log.debug("Saving checkpoint...")
checkpoint_path = os.path.join(train_dir, 'model.ckpt')
saver.save(sess, checkpoint_path, global_step=step)
summary_writer.close()
coord.request_stop()
coord.join(threads)
def main(argv=None): # pylint: disable=unused-argument
assert args.detect or args.segment, "Either detect or segment should be True"
if args.trunk == 'resnet50':
net = ResNet
depth = 50
if args.trunk == 'vgg16':
net = VGG
depth = 16
net = net(config=net_config, depth=depth, training=True, weight_decay=args.weight_decay)
if args.dataset == 'voc07':
dataset = get_dataset('voc07_trainval')
if args.dataset == 'voc12-trainval':
dataset = get_dataset('voc12-train-segmentation', 'voc12-val')
if args.dataset == 'voc12-train':
dataset = get_dataset('voc12-train-segmentation')
if args.dataset == 'voc12-val':
dataset = get_dataset('voc12-val-segmentation')
if args.dataset == 'voc07+12':
dataset = get_dataset('voc07_trainval', 'voc12_train', 'voc12_val')
if args.dataset == 'voc07+12-segfull':
dataset = get_dataset('voc07-trainval-segmentation', 'voc12-train-segmentation', 'voc12-val')
if args.dataset == 'voc07+12-segmentation':
dataset = get_dataset('voc07-trainval-segmentation', 'voc12-train-segmentation')
if args.dataset == 'coco':
# support by default for coco trainval35k split
dataset = get_dataset('coco-train2014-*', 'coco-valminusminival2014-*')
if args.dataset == 'coco-seg':
# support by default for coco trainval35k split
dataset = get_dataset('coco-seg-train2014-*', 'coco-seg-valminusminival2014-*')
train(dataset, net, net_config)
if __name__ == '__main__':
exec_string = ' '.join(sys.argv)
log.debug("Executing a command: %s", exec_string)
cur_commit = subprocess.check_output("git log -n 1 --pretty=format:\"%H\"".split())
cur_branch = subprocess.check_output("git rev-parse --abbrev-ref HEAD".split())
git_diff = subprocess.check_output('git diff --no-color'.split()).decode('ascii')
log.debug("on branch %s with the following diff from HEAD (%s):" % (cur_branch, cur_commit))
log.debug(git_diff)
hostname = socket.gethostname()
if 'gpuhost' in hostname:
gpu_id = os.environ["CUDA_VISIBLE_DEVICES"]
nvidiasmi = subprocess.check_output('nvidia-smi').decode('ascii')
log.debug("Currently we are on %s and use gpu%s:" % (hostname, gpu_id))
log.debug(nvidiasmi)
tf.app.run()