forked from PreferredAI/cornac
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathibpr_example.py
40 lines (33 loc) · 1.35 KB
/
ibpr_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import cornac
from cornac.datasets import movielens
from cornac.eval_methods import RatioSplit
from cornac.models import IBPR
# Load the MovieLens 1M dataset
ml_1m = movielens.load_feedback(variant="1M")
# Instantiate an evaluation method.
ratio_split = RatioSplit(
data=ml_1m, test_size=0.2, rating_threshold=1.0, exclude_unknowns=True, verbose=True
)
# Instantiate a IBPR recommender model.
ibpr = IBPR(k=10, verbose=True)
# Instantiate evaluation metrics.
rec_20 = cornac.metrics.Recall(k=20)
pre_20 = cornac.metrics.Precision(k=20)
# Instantiate and then run an experiment.
cornac.Experiment(
eval_method=ratio_split, models=[ibpr], metrics=[rec_20, pre_20], user_based=True
).run()