-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·178 lines (151 loc) · 5.61 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from datetime import datetime
from pathlib import Path
import numpy as np
import argparse
import torch
import torch.multiprocessing
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
from tqdm import tqdm
from dataset.transform import CustomImageDataset
from network.models import model_selection
if torch.cuda.is_available():
torch.cuda.empty_cache()
else:
torch.mps.empty_cache()
torch.multiprocessing.set_sharing_strategy("file_system")
BATCH_SIZE = 32
transform = transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.5] * 3, [0.5] * 3),
]
)
def load_dataset(data_root):
print(data_root)
# Create custom datasets for each split
train_dataset = CustomImageDataset(
os.path.join(data_root, "train"), transform=transform
)
val_dataset = CustomImageDataset(
os.path.join(data_root, "val"), transform=transform
)
test_dataset = CustomImageDataset(
os.path.join(data_root, "test"), transform=transform
)
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False)
return train_loader, valid_loader, test_loader
def load_model(pretrained):
model, *_ = model_selection(modelname="resnet50", num_out_classes=2)
if pretrained:
print("Loading Model")
checkpoint = torch.load("./model_pre.pt")
model.load_state_dict(checkpoint["model_state_dict"])
return model
# Training and Validation for a single epoch
def train_one_epoch(model, optimizer, criterion, loader, epoch, device, writer):
print(f"train epoch {epoch}") # Run for a single epoch
model.train()
correct = 0
total = 0
running_loss = 0.0
# Use tqdm to create a progress bar
for i, (images, labels) in tqdm(
enumerate(loader), desc=f"training epoch: {epoch}", total=len(loader)
):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
writer.add_scalar("train/Minibatch Loss", loss.item(), i + epoch * len(loader))
accuracy = 100 * correct / total
writer.add_scalar("train/acc", accuracy, epoch)
writer.add_scalar("train/Average Loss", running_loss / len(loader), epoch)
@torch.no_grad()
def evaluate(model, criterion, loader, epoch, device, writer, mode):
print(f"{mode} epoch {epoch}")
model.eval()
correct = 0
total = 0
running_loss = 0.0
with torch.no_grad():
for i, (images, labels) in tqdm(
enumerate(loader), desc=f"evaluating {mode}", total=len(loader)
):
images, labels = images.to(device), labels.to(device)
outputs = model(images)
loss = criterion(outputs, labels)
running_loss += loss.item()
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
writer.add_scalar(
f"{mode}/Minibatch Loss", loss.item(), i + epoch * len(loader)
)
accuracy = 100 * correct / total
writer.add_scalar(f"{mode}/acc", accuracy, epoch)
writer.add_scalar(f"{mode}/Average Loss", running_loss / len(loader), epoch)
# Save the model state if validation accuracy is better
# Save training statistics
if __name__ == "__main__":
torch.cuda.empty_cache()
p = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument("--pretrained", action=argparse.BooleanOptionalAction)
p.add_argument("--model_path", "-mp", type=str, default=None)
p.add_argument("--epochs", "-e", type=int, default=18)
p.add_argument("--data_root", "-dr", type=str, default=None)
args = p.parse_args()
data_root = args.data_root
train_loader, val_loader, test_loader = load_dataset(data_root)
model = load_model(args.pretrained)
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.CrossEntropyLoss()
device = torch.device("cuda" if torch.cuda.is_available() else "mps")
writer = SummaryWriter(
"./SummaryWriter/Resnet_faceshifter" + datetime.now().strftime("%Y%m%d-%H%M%S")
)
print(len(train_loader))
# move model to cuda
model.to(device)
# save the model if an exception occur
try:
for epoch in range(args.epochs):
train_one_epoch(
model, optimizer, criterion, train_loader, epoch, device, writer
)
evaluate(model, criterion, val_loader, epoch, device, writer, mode="val")
evaluate(model, criterion, test_loader, epoch, device, writer, mode="test")
torch.cuda.empty_cache()
except Exception as e:
print(e)
torch.save(
{
"model_state_dict": model.state_dict(),
},
args.model_path,
)
print("Model saved")
writer.close()
exit(0)
torch.save(
{
"model_state_dict": model.state_dict(),
},
args.model_path,
)
print("Model saved")
print("Finished Training for a single epoch")
writer.close()