forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 56
/
train-help.txt
executable file
·89 lines (73 loc) · 4.08 KB
/
train-help.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
usage: train.py [-h] --outdir DIR [--gpus INT] [--snap INT] [--seed INT] [-n]
--data PATH [--res INT] [--mirror BOOL] [--metrics LIST]
[--metricdata PATH]
[--cfg {auto,stylegan2,paper256,paper512,paper1024,cifar,cifarbaseline}]
[--gamma FLOAT] [--kimg INT] [--aug {noaug,ada,fixed,adarv}]
[--p FLOAT] [--target TARGET]
[--augpipe {blit,geom,color,filter,noise,cutout,bg,bgc,bgcf,bgcfn,bgcfnc}]
[--cmethod {nocmethod,bcr,zcr,pagan,wgangp,auxrot,spectralnorm,shallowmap,adropout}]
[--dcap FLOAT] [--resume RESUME] [--freezed INT]
Train a GAN using the techniques described in the paper
"Training Generative Adversarial Networks with Limited Data".
optional arguments:
-h, --help show this help message and exit
general options:
--outdir DIR Where to save the results (required)
--gpus INT Number of GPUs to use (default: 1 gpu)
--snap INT Snapshot interval (default: 50 ticks)
--seed INT Random seed (default: 1000)
-n, --dry-run Print training options and exit
training dataset:
--data PATH Training dataset path (required)
--res INT Dataset resolution (default: highest available)
--mirror BOOL Augment dataset with x-flips (default: false)
metrics:
--metrics LIST Comma-separated list or "none" (default: fid50k_full)
--metricdata PATH Dataset to evaluate metrics against (optional)
base config:
--cfg {auto,stylegan2,paper256,paper512,paper1024,cifar,cifarbaseline}
Base config (default: auto)
--gamma FLOAT Override R1 gamma
--kimg INT Override training duration
discriminator augmentation:
--aug {noaug,ada,fixed,adarv}
Augmentation mode (default: ada)
--p FLOAT Specify augmentation probability for --aug=fixed
--target TARGET Override ADA target for --aug=ada and --aug=adarv
--augpipe {blit,geom,color,filter,noise,cutout,bg,bgc,bgcf,bgcfn,bgcfnc}
Augmentation pipeline (default: bgc)
comparison methods:
--cmethod {nocmethod,bcr,zcr,pagan,wgangp,auxrot,spectralnorm,shallowmap,adropout}
Comparison method (default: nocmethod)
--dcap FLOAT Multiplier for discriminator capacity
transfer learning:
--resume RESUME Resume from network pickle (default: noresume)
--freezed INT Freeze-D (default: 0 discriminator layers)
examples:
# Train custom dataset using 1 GPU.
python train.py --outdir=~/training-runs --gpus=1 --data=~/datasets/custom
# Train class-conditional CIFAR-10 using 2 GPUs.
python train.py --outdir=~/training-runs --gpus=2 --data=~/datasets/cifar10c \
--cfg=cifar
# Transfer learn MetFaces from FFHQ using 4 GPUs.
python train.py --outdir=~/training-runs --gpus=4 --data=~/datasets/metfaces \
--cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10
# Reproduce original StyleGAN2 config F.
python train.py --outdir=~/training-runs --gpus=8 --data=~/datasets/ffhq \
--cfg=stylegan2 --res=1024 --mirror=1 --aug=noaug
available base configs (--cfg):
auto Automatically select reasonable defaults based on resolution
and GPU count. Good starting point for new datasets.
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024.
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256.
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512.
paper1024 Reproduce results for MetFaces at 1024x1024.
cifar Reproduce results for CIFAR-10 (tuned configuration).
cifarbaseline Reproduce results for CIFAR-10 (baseline configuration).
transfer learning source networks (--resume):
ffhq256 FFHQ trained at 256x256 resolution.
ffhq512 FFHQ trained at 512x512 resolution.
ffhq1024 FFHQ trained at 1024x1024 resolution.
celebahq256 CelebA-HQ trained at 256x256 resolution.
lsundog256 LSUN Dog trained at 256x256 resolution.
<path or URL> Custom network pickle.