forked from NVlabs/stylegan2-ada
-
Notifications
You must be signed in to change notification settings - Fork 56
/
train.py
executable file
·647 lines (542 loc) · 31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Train a GAN using the techniques described in the paper
"Training Generative Adversarial Networks with Limited Data"."""
import os
import argparse
import json
import re
import tensorflow as tf
import dnnlib
import dnnlib.tflib as tflib
from training import training_loop
from training import dataset
from metrics import metric_defaults
#----------------------------------------------------------------------------
class UserError(Exception):
pass
#----------------------------------------------------------------------------
def setup_training_options(
# General options (not included in desc).
gpus = None, # Number of GPUs: <int>, default = 1 gpu
snap = None, # Snapshot interval: <int>, default = 50 ticks
# Training dataset.
data = None, # Training dataset (required): <path>
res = None, # Override dataset resolution: <int>, default = highest available
mirror = None, # Augment dataset with x-flips: <bool>, default = False
mirrory = None, # Augment dataset with y-flips: <bool>, default = False
use_raw = None,
# Metrics (not included in desc).
metrics = None, # List of metric names: [], ['fid50k_full'] (default), ...
metricdata = None, # Metric dataset (optional): <path>
# Base config.
cfg = None, # Base config: 'auto' (default), 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar', 'cifarbaseline'
lrate = None, # Override learning rate
ttur = None, # Use Two Time-Scale Update Rule
gamma = None, # Override R1 gamma: <float>, default = depends on cfg
nkimg = None, # Override starting count
kimg = None, # Override training duration: <int>, default = depends on cfg
topk = None, # set top-k percentage
# Discriminator augmentation.
aug = None, # Augmentation mode: 'ada' (default), 'noaug', 'fixed', 'adarv'
p = None, # Specify p for 'fixed' (required): <float>
target = None, # Override ADA target for 'ada' and 'adarv': <float>, default = depends on aug
initstrength = None,
augpipe = None, # Augmentation pipeline: 'blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc' (default), ..., 'bgcfnc'
# Comparison methods.
cmethod = None, # Comparison method: 'nocmethod' (default), 'bcr', 'zcr', 'pagan', 'wgangp', 'auxrot', 'spectralnorm', 'shallowmap', 'adropout'
dcap = None, # Multiplier for discriminator capacity: <float>, default = 1
# Transfer learning.
resume = None, # Load previous network: 'noresume' (default), 'ffhq256', 'ffhq512', 'ffhq1024', 'celebahq256', 'lsundog256', <file>, <url>
freezed = None, # Freeze-D: <int>, default = 0 discriminator layers
):
# Initialize dicts.
args = dnnlib.EasyDict()
args.G_args = dnnlib.EasyDict(func_name='training.networks.G_main')
args.D_args = dnnlib.EasyDict(func_name='training.networks.D_main')
args.G_opt_args = dnnlib.EasyDict(beta1=0.0, beta2=0.99)
args.D_opt_args = dnnlib.EasyDict(beta1=0.0, beta2=0.99)
args.loss_args = dnnlib.EasyDict(func_name='training.loss.stylegan2')
args.augment_args = dnnlib.EasyDict(class_name='training.augment.AdaptiveAugment')
# ---------------------------
# General options: gpus, snap
# ---------------------------
if gpus is None:
gpus = 1
assert isinstance(gpus, int)
if not (gpus >= 1 and gpus & (gpus - 1) == 0):
raise UserError('--gpus must be a power of two')
args.num_gpus = gpus
if snap is None:
snap = 50
assert isinstance(snap, int)
if snap < 1:
raise UserError('--snap must be at least 1')
args.image_snapshot_ticks = snap
args.network_snapshot_ticks = snap
# ---------------------------------------------
# Training dataset: data, res, mirror, mirrory
# ---------------------------------------------
assert data is not None
assert isinstance(data, str)
data_name = os.path.basename(os.path.abspath(data))
if not os.path.isdir(data) or len(data_name) == 0:
raise UserError('--data must point to a directory containing *.tfrecords')
desc = data_name
with tf.Graph().as_default(), tflib.create_session().as_default(): # pylint: disable=not-context-manager
args.train_dataset_args = dnnlib.EasyDict(path=data, max_label_size='full')
args.train_dataset_args.use_raw = use_raw
dataset_obj = dataset.load_dataset(**args.train_dataset_args) # try to load the data and see what comes out
args.train_dataset_args.resolution = dataset_obj.shape[-1] # be explicit about resolution
args.train_dataset_args.max_label_size = dataset_obj.label_size # be explicit about label size
validation_set_available = dataset_obj.has_validation_set
dataset_obj.close()
dataset_obj = None
if res is None:
res = args.train_dataset_args.resolution
else:
assert isinstance(res, int)
if not (res >= 4 and res & (res - 1) == 0):
raise UserError('--res must be a power of two and at least 4')
if res > args.train_dataset_args.resolution:
raise UserError(f'--res cannot exceed maximum available resolution in the dataset ({args.train_dataset_args.resolution})')
desc += f'-res{res:d}'
args.train_dataset_args.resolution = res
if mirror is None:
mirror = False
assert isinstance(mirror, bool)
if mirror:
desc += '-mirror'
args.train_dataset_args.mirror_augment = mirror
if mirrory is None:
mirrory = False
assert isinstance(mirrory, bool)
if mirrory:
desc += '-mirrory'
args.train_dataset_args.mirror_augment_v = mirrory
args.train_dataset_args.use_raw = use_raw
# ----------------------------
# Metrics: metrics, metricdata
# ----------------------------
if metrics is None:
metrics = ['fid50k_full']
assert isinstance(metrics, list)
assert all(isinstance(metric, str) for metric in metrics)
args.metric_arg_list = []
for metric in metrics:
if metric not in metric_defaults.metric_defaults:
raise UserError('\n'.join(['--metrics can only contain the following values:', 'none'] + list(metric_defaults.metric_defaults.keys())))
args.metric_arg_list.append(metric_defaults.metric_defaults[metric])
args.metric_dataset_args = dnnlib.EasyDict(args.train_dataset_args)
if metricdata is not None:
assert isinstance(metricdata, str)
if not os.path.isdir(metricdata):
raise UserError('--metricdata must point to a directory containing *.tfrecords')
args.metric_dataset_args.path = metricdata
# -----------------------------
# Base config: cfg, gamma, kimg
# -----------------------------
if cfg is None:
cfg = 'auto'
assert isinstance(cfg, str)
desc += f'-{cfg}'
cfg_specs = {
'auto': dict(ref_gpus=-1, kimg=25000, mb=-1, mbstd=-1, fmaps=-1, lrate=-1, gamma=-1, ema=-1, ramp=0.05, map=2), # populated dynamically based on 'gpus' and 'res'
'aydao': dict(ref_gpus=2, kimg=25000, mb=16, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 11GB GPU
'11gb-gpu': dict(ref_gpus=1, kimg=25000, mb=4, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 11GB GPU
'11gb-gpu-complex': dict(ref_gpus=1, kimg=25000, mb=4, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 11GB GPU
'24gb-gpu': dict(ref_gpus=1, kimg=25000, mb=8, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 24GB GPU
'24gb-gpu-complex': dict(ref_gpus=1, kimg=25000, mb=8, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 24GB GPU
'24gb-2gpu-complex': dict(ref_gpus=2, kimg=25000, mb=16, mbstd=8, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 24GB GPU
'48gb-gpu': dict(ref_gpus=1, kimg=25000, mb=16, mbstd=16, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 48GB GPU
'48gb-2gpu': dict(ref_gpus=2, kimg=25000, mb=32, mbstd=16, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, 48GB GPU
'stylegan2': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # uses mixed-precision, unlike original StyleGAN2
'paper256': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=0.5, lrate=0.0025, gamma=1, ema=20, ramp=None, map=8),
'paper512': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=1, lrate=0.0025, gamma=0.5, ema=20, ramp=None, map=8),
'paper1024': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=2, ema=10, ramp=None, map=8),
'cifar': dict(ref_gpus=2, kimg=100000, mb=64, mbstd=32, fmaps=0.5, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=2),
'cifarbaseline': dict(ref_gpus=2, kimg=100000, mb=64, mbstd=32, fmaps=0.5, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=8),
}
assert cfg in cfg_specs
spec = dnnlib.EasyDict(cfg_specs[cfg])
if cfg == 'auto':
desc += f'{gpus:d}'
spec.ref_gpus = gpus
spec.mb = max(min(gpus * min(4096 // res, 32), 64), gpus) # keep gpu memory consumption at bay
spec.mbstd = min(spec.mb // gpus, 4) # other hyperparams behave more predictably if mbstd group size remains fixed
spec.fmaps = 1 if res >= 512 else 0.5
spec.lrate = 0.002 if res >= 1024 else 0.0025
spec.gamma = 0.0002 * (res ** 2) / spec.mb # heuristic formula
spec.ema = spec.mb * 10 / 32
args.total_kimg = spec.kimg
args.minibatch_size = spec.mb
args.minibatch_gpu = spec.mb // spec.ref_gpus
args.D_args.mbstd_group_size = spec.mbstd
args.G_args.fmap_base = args.D_args.fmap_base = int(spec.fmaps * 16384)
args.G_args.fmap_max = args.D_args.fmap_max = 512
args.G_opt_args.learning_rate = args.D_opt_args.learning_rate = spec.lrate
args.loss_args.r1_gamma = spec.gamma
args.G_smoothing_kimg = spec.ema
args.G_smoothing_rampup = spec.ramp
args.G_args.mapping_layers = spec.map
args.G_args.num_fp16_res = args.D_args.num_fp16_res = 4 # enable mixed-precision training
args.G_args.conv_clamp = args.D_args.conv_clamp = 256 # clamp activations to avoid float16 overflow
if cfg == 'aydao':
# disable path length and style mixing regularization
args.loss_args.pl_weight = 0
args.G_args.style_mixing_prob = None
# double generator capacity
args.G_args.fmap_base = 32 << 10
args.G_args.fmap_max = 1024
# enable top k training
args.loss_args.G_top_k = True
# args.loss_args.G_top_k_gamma = 0.99 # takes ~70% of full training from scratch to decay to 0.5
# args.loss_args.G_top_k_gamma = 0.9862 # takes 12500 kimg to decay to 0.5 (~1/2 of total_kimg when training from scratch)
args.loss_args.G_top_k_gamma = 0.9726 # takes 6250 kimg to decay to 0.5 (~1/4 of total_kimg when training from scratch)
args.loss_args.G_top_k_frac = 0.5
# reduce in-memory size, you need a BIG GPU for this model
args.minibatch_gpu = 4 # probably will need to set this pretty low with such a large G, higher values work better for top-k training though
args.G_args.num_fp16_res = 6 # making more layers fp16 can help as well
if cfg == 'cifar' or cfg.split('-')[-1] == 'complex':
args.loss_args.pl_weight = 0 # disable path length regularization
args.G_args.style_mixing_prob = None # disable style mixing
args.D_args.architecture = 'orig' # disable residual skip connections
if lrate is not None:
assert isinstance(lrate, float)
args.G_opt_args.learning_rate = args.D_opt_args.learning_rate = lrate
if ttur is not None:
args.D_opt_args.learning_rate = (args.G_opt_args.learning_rate * 2.0)
if gamma is not None:
assert isinstance(gamma, float)
if not gamma >= 0:
raise UserError('--gamma must be non-negative')
desc += f'-gamma{gamma:g}'
args.loss_args.r1_gamma = gamma
if nkimg is not None:
assert isinstance(nkimg, int)
args.nimg = nkimg * 1000
if kimg is not None:
assert isinstance(kimg, int)
if not kimg >= 1:
raise UserError('--kimg must be at least 1')
desc += f'-kimg{kimg:d}'
args.total_kimg = kimg
if topk is not None:
assert isinstance(topk, float)
args.loss_args.G_top_k = True
args.loss_args.G_top_k_gamma = topk
args.loss_args.G_top_k_frac = 0.5
# ---------------------------------------------------
# Discriminator augmentation: aug, p, target, augpipe
# ---------------------------------------------------
if aug is None:
aug = 'ada'
else:
assert isinstance(aug, str)
desc += f'-{aug}'
if aug == 'ada':
args.augment_args.tune_heuristic = 'rt'
args.augment_args.tune_target = 0.6
elif aug == 'noaug':
pass
elif aug == 'fixed':
if p is None:
raise UserError(f'--aug={aug} requires specifying --p')
elif aug == 'adarv':
if not validation_set_available:
raise UserError(f'--aug={aug} requires separate validation set; please see "python dataset_tool.py pack -h"')
args.augment_args.tune_heuristic = 'rv'
args.augment_args.tune_target = 0.5
else:
raise UserError(f'--aug={aug} not supported')
if p is not None:
assert isinstance(p, float)
if aug != 'fixed':
raise UserError('--p can only be specified with --aug=fixed')
if not 0 <= p <= 1:
raise UserError('--p must be between 0 and 1')
desc += f'-p{p:g}'
args.augment_args.initial_strength = p
if target is not None:
assert isinstance(target, float)
if aug not in ['ada', 'adarv']:
raise UserError('--target can only be specified with --aug=ada or --aug=adarv')
if not 0 <= target <= 1:
raise UserError('--target must be between 0 and 1')
desc += f'-target{target:g}'
args.augment_args.tune_target = target
if initstrength is not None:
assert isinstance(initstrength, float)
args.augment_args.initial_strength = initstrength
assert augpipe is None or isinstance(augpipe, str)
if augpipe is None:
augpipe = 'bgc'
else:
if aug == 'noaug':
raise UserError('--augpipe cannot be specified with --aug=noaug')
desc += f'-{augpipe}'
augpipe_specs = {
'blit': dict(xflip=1, rotate90=1, xint=1),
'geom': dict(scale=1, rotate=1, aniso=1, xfrac=1),
'color': dict(brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'filter': dict(imgfilter=1),
'noise': dict(noise=1),
'cutout': dict(cutout=1),
'bg': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1),
'bgc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1),
'bgcf': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1),
'bgcfn': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1),
'bgcfnc': dict(xflip=1, rotate90=1, xint=1, scale=1, rotate=1, aniso=1, xfrac=1, brightness=1, contrast=1, lumaflip=1, hue=1, saturation=1, imgfilter=1, noise=1, cutout=1),
}
assert augpipe in augpipe_specs
if aug != 'noaug':
args.augment_args.apply_func = 'training.augment.augment_pipeline'
args.augment_args.apply_args = augpipe_specs[augpipe]
# ---------------------------------
# Comparison methods: cmethod, dcap
# ---------------------------------
assert cmethod is None or isinstance(cmethod, str)
if cmethod is None:
cmethod = 'nocmethod'
else:
desc += f'-{cmethod}'
if cmethod == 'nocmethod':
pass
elif cmethod == 'bcr':
args.loss_args.func_name = 'training.loss.cmethods'
args.loss_args.bcr_real_weight = 10
args.loss_args.bcr_fake_weight = 10
args.loss_args.bcr_augment = dnnlib.EasyDict(func_name='training.augment.augment_pipeline', xint=1, xint_max=1/32)
elif cmethod == 'zcr':
args.loss_args.func_name = 'training.loss.cmethods'
args.loss_args.zcr_gen_weight = 0.02
args.loss_args.zcr_dis_weight = 0.2
args.G_args.num_fp16_res = args.D_args.num_fp16_res = 0 # disable mixed-precision training
args.G_args.conv_clamp = args.D_args.conv_clamp = None
elif cmethod == 'pagan':
if aug != 'noaug':
raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug')
args.D_args.use_pagan = True
args.augment_args.tune_heuristic = 'rt' # enable ada heuristic
args.augment_args.pop('apply_func', None) # disable discriminator augmentation
args.augment_args.pop('apply_args', None)
args.augment_args.tune_target = 0.95
elif cmethod == 'wgangp':
if aug != 'noaug':
raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug')
if gamma is not None:
raise UserError(f'--cmethod={cmethod} is not compatible with --gamma')
args.loss_args = dnnlib.EasyDict(func_name='training.loss.wgangp')
args.G_opt_args.learning_rate = args.D_opt_args.learning_rate = 0.001
args.G_args.num_fp16_res = args.D_args.num_fp16_res = 0 # disable mixed-precision training
args.G_args.conv_clamp = args.D_args.conv_clamp = None
args.lazy_regularization = False
elif cmethod == 'auxrot':
if args.train_dataset_args.max_label_size > 0:
raise UserError(f'--cmethod={cmethod} is not compatible with label conditioning; please specify a dataset without labels')
args.loss_args.func_name = 'training.loss.cmethods'
args.loss_args.auxrot_alpha = 10
args.loss_args.auxrot_beta = 5
args.D_args.score_max = 5 # prepare D to output 5 scalars per image instead of just 1
elif cmethod == 'spectralnorm':
args.D_args.use_spectral_norm = True
elif cmethod == 'shallowmap':
if args.G_args.mapping_layers == 2:
raise UserError(f'--cmethod={cmethod} is a no-op for --cfg={cfg}')
args.G_args.mapping_layers = 2
elif cmethod == 'adropout':
if aug != 'noaug':
raise UserError(f'--cmethod={cmethod} is not compatible with discriminator augmentation; please specify --aug=noaug')
args.D_args.adaptive_dropout = 1
args.augment_args.tune_heuristic = 'rt' # enable ada heuristic
args.augment_args.pop('apply_func', None) # disable discriminator augmentation
args.augment_args.pop('apply_args', None)
args.augment_args.tune_target = 0.6
else:
raise UserError(f'--cmethod={cmethod} not supported')
if dcap is not None:
assert isinstance(dcap, float)
if not dcap > 0:
raise UserError('--dcap must be positive')
desc += f'-dcap{dcap:g}'
args.D_args.fmap_base = max(int(args.D_args.fmap_base * dcap), 1)
args.D_args.fmap_max = max(int(args.D_args.fmap_max * dcap), 1)
# ----------------------------------
# Transfer learning: resume, freezed
# ----------------------------------
resume_specs = {
'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl',
'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl',
'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl',
'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl',
'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl',
'afhqcat512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/afhqcat.pkl',
'afhqdog512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/afhqdog.pkl',
'afhqwild512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/afhqwild.pkl',
'brecahad512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/brecahad.pkl',
'cifar10': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/cifar10.pkl',
'metfaces': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/metfaces.pkl',
}
assert resume is None or isinstance(resume, str)
if resume is None:
resume = 'noresume'
elif resume == 'noresume':
desc += '-noresume'
elif resume in resume_specs:
desc += f'-resume{resume}'
args.resume_pkl = resume_specs[resume] # predefined url
else:
desc += '-resumecustom'
args.resume_pkl = resume # custom path or url
if resume != 'noresume':
args.augment_args.tune_kimg = 100 # make ADA react faster at the beginning
args.G_smoothing_rampup = None # disable EMA rampup
if freezed is not None:
assert isinstance(freezed, int)
if not freezed >= 0:
raise UserError('--freezed must be non-negative')
desc += f'-freezed{freezed:d}'
args.D_args.freeze_layers = freezed
return desc, args
#----------------------------------------------------------------------------
def run_training(outdir, seed, dry_run, **hyperparam_options):
# Setup training options.
tflib.init_tf({'rnd.np_random_seed': seed})
run_desc, training_options = setup_training_options(**hyperparam_options)
# Pick output directory.
prev_run_dirs = []
if os.path.isdir(outdir):
prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))]
prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs]
prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None]
cur_run_id = max(prev_run_ids, default=-1) + 1
training_options.run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}')
assert not os.path.exists(training_options.run_dir)
# Print options.
print()
print('Training options:')
print(json.dumps(training_options, indent=2))
print()
print(f'Output directory: {training_options.run_dir}')
print(f'Training data: {training_options.train_dataset_args.path}')
print(f'Training length: {training_options.total_kimg} kimg')
print(f'Resolution: {training_options.train_dataset_args.resolution}')
print(f'Number of GPUs: {training_options.num_gpus}')
print()
# Dry run?
if dry_run:
print('Dry run; exiting.')
return
# Kick off training.
print('Creating output directory...')
os.makedirs(training_options.run_dir)
with open(os.path.join(training_options.run_dir, 'training_options.json'), 'wt') as f:
json.dump(training_options, f, indent=2)
with dnnlib.util.Logger(os.path.join(training_options.run_dir, 'log.txt')):
training_loop.training_loop(**training_options)
#----------------------------------------------------------------------------
def _str_to_bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
if v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
raise argparse.ArgumentTypeError('Boolean value expected.')
def _parse_comma_sep(s):
if s is None or s.lower() == 'none' or s == '':
return []
return s.split(',')
#----------------------------------------------------------------------------
_cmdline_help_epilog = '''examples:
# Train custom dataset using 1 GPU.
python %(prog)s --outdir=~/training-runs --gpus=1 --data=~/datasets/custom
# Train class-conditional CIFAR-10 using 2 GPUs.
python %(prog)s --outdir=~/training-runs --gpus=2 --data=~/datasets/cifar10c \\
--cfg=cifar
# Transfer learn MetFaces from FFHQ using 4 GPUs.
python %(prog)s --outdir=~/training-runs --gpus=4 --data=~/datasets/metfaces \\
--cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10
# Reproduce original StyleGAN2 config F.
python %(prog)s --outdir=~/training-runs --gpus=8 --data=~/datasets/ffhq \\
--cfg=stylegan2 --res=1024 --mirror=1 --aug=noaug
available base configs (--cfg):
auto Automatically select reasonable defaults based on resolution
and GPU count. Good starting point for new datasets.
stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024.
paper256 Reproduce results for FFHQ and LSUN Cat at 256x256.
paper512 Reproduce results for BreCaHAD and AFHQ at 512x512.
paper1024 Reproduce results for MetFaces at 1024x1024.
cifar Reproduce results for CIFAR-10 (tuned configuration).
cifarbaseline Reproduce results for CIFAR-10 (baseline configuration).
transfer learning source networks (--resume):
ffhq256 FFHQ trained at 256x256 resolution.
ffhq512 FFHQ trained at 512x512 resolution.
ffhq1024 FFHQ trained at 1024x1024 resolution.
celebahq256 CelebA-HQ trained at 256x256 resolution.
lsundog256 LSUN Dog trained at 256x256 resolution.
afhqcat512 AFHQ Cat trained at 512x512 resolution.
afhqdog512 AFHQ Dog trained at 512x512 resolution.
afhqwild512 AFHQ Wild trained at 512x512 resolution.
brecahad512 BreCaHAD trained at 512x512 resolution.
cifar10 CIFAR10 trained at 32x32 resolution.
metfaces512 MetFaces trained at 512x512 resolution.
<path or URL> Custom network pickle.
'''
#----------------------------------------------------------------------------
def main():
parser = argparse.ArgumentParser(
description='Train a GAN using the techniques described in the paper\n"Training Generative Adversarial Networks with Limited Data".',
epilog=_cmdline_help_epilog,
formatter_class=argparse.RawDescriptionHelpFormatter
)
group = parser.add_argument_group('general options')
group.add_argument('--outdir', help='Where to save the results (required)', required=True, metavar='DIR')
group.add_argument('--gpus', help='Number of GPUs to use (default: 1 gpu)', type=int, metavar='INT')
group.add_argument('--snap', help='Snapshot interval (default: 50 ticks)', type=int, metavar='INT')
group.add_argument('--seed', help='Random seed (default: %(default)s)', type=int, default=1000, metavar='INT')
group.add_argument('-n', '--dry-run', help='Print training options and exit', action='store_true', default=False)
group = parser.add_argument_group('training dataset')
group.add_argument('--data', help='Training dataset path (required)', metavar='PATH', required=True)
group.add_argument('--res', help='Dataset resolution (default: highest available)', type=int, metavar='INT')
group.add_argument('--mirror', help='Augment dataset with x-flips (default: false)', type=_str_to_bool, metavar='BOOL')
group.add_argument('--mirrory', help='Augment dataset with y-flips (default: false)', type=_str_to_bool, metavar='BOOL')
group.add_argument('--use-raw', help='Use raw image dataset, i.e. created from create_from_images_raw (default: %(default)s)', default=False, metavar='BOOL', type=_str_to_bool)
group = parser.add_argument_group('metrics')
group.add_argument('--metrics', help='Comma-separated list or "none" (default: fid50k_full)', type=_parse_comma_sep, metavar='LIST')
group.add_argument('--metricdata', help='Dataset to evaluate metrics against (optional)', metavar='PATH')
group = parser.add_argument_group('base config')
group.add_argument('--cfg', help='Base config (default: auto)', choices=['auto', '11gb-gpu','11gb-gpu-complex', '24gb-gpu','24gb-gpu-complex', '48gb-gpu','48gb-2gpu', 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar', 'cifarbaseline', 'aydao'])
group.add_argument('--lrate', help='Override learning rate', type=float, metavar='FLOAT')
group.add_argument('--ttur', help='Use Two Time-Scale Update Rule (double learning rate for discriminator) (default: false)', type=_str_to_bool, metavar='BOOL')
group.add_argument('--gamma', help='Override R1 gamma', type=float, metavar='FLOAT')
group.add_argument('--nkimg', help='Override starting count', type=int, metavar='INT')
group.add_argument('--kimg', help='Override training duration', type=int, metavar='INT')
group.add_argument('--topk', help='utilize top-k training', type=int, metavar='FLOAT')
group = parser.add_argument_group('discriminator augmentation')
group.add_argument('--aug', help='Augmentation mode (default: ada)', choices=['noaug', 'ada', 'fixed', 'adarv'])
group.add_argument('--p', help='Specify augmentation probability for --aug=fixed', type=float, metavar='FLOAT')
group.add_argument('--target', help='Override ADA target for --aug=ada and --aug=adarv', type=float)
group.add_argument('--initstrength', help='Override ADA strength at start', type=float)
group.add_argument('--augpipe', help='Augmentation pipeline (default: bgc)', choices=['blit', 'geom', 'color', 'filter', 'noise', 'cutout', 'bg', 'bgc', 'bgcf', 'bgcfn', 'bgcfnc'])
group = parser.add_argument_group('comparison methods')
group.add_argument('--cmethod', help='Comparison method (default: nocmethod)', choices=['nocmethod', 'bcr', 'zcr', 'pagan', 'wgangp', 'auxrot', 'spectralnorm', 'shallowmap', 'adropout'])
group.add_argument('--dcap', help='Multiplier for discriminator capacity', type=float, metavar='FLOAT')
group = parser.add_argument_group('transfer learning')
group.add_argument('--resume', help='Resume from network pickle (default: noresume)')
group.add_argument('--freezed', help='Freeze-D (default: 0 discriminator layers)', type=int, metavar='INT')
args = parser.parse_args()
try:
run_training(**vars(args))
except UserError as err:
print(f'Error: {err}')
exit(1)
#----------------------------------------------------------------------------
if __name__ == "__main__":
main()
#----------------------------------------------------------------------------