-
Notifications
You must be signed in to change notification settings - Fork 29
/
utils.py
310 lines (259 loc) · 12.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright 2022 D-Wave Systems Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import plotly.colors as colors
import plotly.graph_objects as go
import numpy as np
from tabulate import tabulate
from typing import List, Optional, TYPE_CHECKING
import dimod
if TYPE_CHECKING:
from packing3d import Cases, Bins, Variables
def print_cqm_stats(cqm: dimod.ConstrainedQuadraticModel) -> None:
"""Print some information about the CQM model defining the 3D bin packing problem.
Args:
cqm: A dimod constrained quadratic model.
"""
if not isinstance(cqm, dimod.ConstrainedQuadraticModel):
raise ValueError("input instance should be a dimod CQM model")
num_binaries = sum(cqm.vartype(v) is dimod.BINARY for v in cqm.variables)
num_integers = sum(cqm.vartype(v) is dimod.INTEGER for v in cqm.variables)
num_continuous = sum(cqm.vartype(v) is dimod.REAL for v in cqm.variables)
num_discretes = len(cqm.discrete)
num_linear_constraints = sum(
constraint.lhs.is_linear() for constraint in cqm.constraints.values())
num_quadratic_constraints = sum(
not constraint.lhs.is_linear() for constraint in
cqm.constraints.values())
num_le_inequality_constraints = sum(
constraint.sense is dimod.sym.Sense.Le for constraint in
cqm.constraints.values())
num_ge_inequality_constraints = sum(
constraint.sense is dimod.sym.Sense.Ge for constraint in
cqm.constraints.values())
num_equality_constraints = sum(
constraint.sense is dimod.sym.Sense.Eq for constraint in
cqm.constraints.values())
assert (num_binaries + num_integers + num_continuous == len(cqm.variables))
assert (num_quadratic_constraints + num_linear_constraints ==
len(cqm.constraints))
print(" \n" + "=" * 35 + "MODEL INFORMATION" + "=" * 35)
print(
' ' * 10 + 'Variables' + " " * 20 + 'Constraints' + " " * 15 +
'Sensitivity')
print('-' * 30 + " " + '-' * 28 + ' ' + '-' * 18)
print(tabulate([["Binary", "Integer", "Continuous", "Quad", "Linear",
"One-hot", "EQ ", "LT", "GT"],
[num_binaries, num_integers, num_continuous,
num_quadratic_constraints,
num_linear_constraints, num_discretes,
num_equality_constraints,
num_le_inequality_constraints,
num_ge_inequality_constraints]],
headers="firstrow"))
def _cuboid_data(origin: tuple, size: tuple = (1, 1, 1)):
X = [[[0, 1, 0], [0, 0, 0], [1, 0, 0], [1, 1, 0]],
[[0, 0, 0], [0, 0, 1], [1, 0, 1], [1, 0, 0]],
[[1, 0, 1], [1, 0, 0], [1, 1, 0], [1, 1, 1]],
[[0, 0, 1], [0, 0, 0], [0, 1, 0], [0, 1, 1]],
[[0, 1, 0], [0, 1, 1], [1, 1, 1], [1, 1, 0]],
[[0, 1, 1], [0, 0, 1], [1, 0, 1], [1, 1, 1]]]
X = np.array(X).astype(float)
for i in range(3):
X[:, :, i] *= size[i]
X += np.array(origin)
return X
def _get_all_cuboids(positions: List[tuple], sizes: List[tuple],
color_coded: bool, case_ids: np.array) -> list:
case_data = []
mesh_kwargs = dict(alphahull=0, flatshading=True, showlegend=True)
colors = _get_colors(case_ids)
for p, s, c, id in zip(positions, sizes, colors, case_ids):
case_points = _cuboid_data(p, size=s)
# Get all unique vertices for 3d Mesh
x, y, z = np.unique(np.vstack(case_points), axis=0).T
if color_coded:
mesh_kwargs["color"] = c
case_data.append(go.Mesh3d(x=x, y=y, z=z,
name=f"case_{id}",
**mesh_kwargs))
return case_data
def _plot_cuboids(positions: List[tuple], sizes: List[tuple],
bin_length: int, bin_width: int,
bin_height: int, color_coded: bool,
case_ids: np.array) -> go.Figure:
case_data = _get_all_cuboids(positions, sizes, color_coded, case_ids)
fig = go.Figure(data=case_data)
fig.update_layout(scene=dict(
xaxis=dict(range=[0, bin_length * 1.1]),
yaxis=dict(range=[0, bin_width * 1.1]),
zaxis=dict(range=[0, bin_height * 1.1])
))
return fig
def _get_colors(case_ids: np.array) -> list:
if len(np.unique(case_ids)) > 1:
scaled = (case_ids - np.min(case_ids)) / \
(np.max(case_ids) - np.min(case_ids))
return colors.sample_colorscale(colors.sequential.Rainbow, scaled)
return ["blue"] * len(case_ids)
def plot_cuboids(sample: dimod.SampleSet, vars: "Variables",
cases: "Cases", bins: "Bins", effective_dimensions: list,
color_coded: bool = True) -> go.Figure:
"""Visualization utility tool to view 3D bin packing solution.
Args:
sample: A ``dimod.SampleSet`` that represents the best feasible solution found.
vars: Instance of ``Variables`` that defines the complete set of variables
for the 3D bin packing problem.
cases: Instance of ``Cases``, representing cuboid items packed into containers.
bins: Instance of ``Bins``, representing containers to pack cases into.
effective_dimensions: List of case dimensions based on orientations of cases.
Returns:
``plotly.graph_objects.Figure`` with all cases packed according to CQM results.
"""
dx, dy, dz = effective_dimensions
num_cases = cases.num_cases
num_bins = bins.num_bins
positions = []
sizes = []
for i in range(num_cases):
positions.append(
(vars.x[i].energy(sample), vars.y[i].energy(sample),
vars.z[i].energy(sample)))
sizes.append((dx[i].energy(sample),
dy[i].energy(sample),
dz[i].energy(sample)))
fig = _plot_cuboids(positions, sizes, bins.length * num_bins,
bins.width, bins.height, color_coded, cases.case_ids)
for i in range(num_bins):
fig.add_trace(
go.Scatter3d(x=[bins.length * i, bins.length * (i + 1)], y=[0, 0],
z=[0, 0], mode='lines', name=f"Bin Boundary {i + 1}",
line_color="red", line_width=5)
)
fig.add_trace(
go.Scatter3d(x=[bins.length * (i + 1)] * 2, y=[0, bins.width],
z=[0, 0], mode='lines', name=f"Bin Boundary {i + 1}",
line_color="red", line_width=5)
)
fig.add_trace(
go.Scatter3d(x=[bins.length * (i + 1)] * 2, y=[0, 0],
z=[0, bins.height], mode='lines',
name=f"Bin Boundary {i + 1}", line_color="red",
line_width=5)
)
fig.update_layout(scene=dict(aspectmode="data"))
return fig
def read_instance(instance_path: str) -> dict:
"""Convert instance input files into raw problem data.
Args:
instance_path: Path to the bin packing problem instance file.
Returns:
data: dictionary containing raw information for both bins and cases.
"""
data = {"num_bins": 0, "bin_dimensions": [], "quantity": [], "case_ids": [],
"case_length": [], "case_width": [], "case_height": []}
with open(instance_path) as f:
for i, line in enumerate(f):
if i == 0:
data["num_bins"] = int(line.split()[-1])
elif i == 1:
data["bin_dimensions"] = [int(i) for i in line.split()[-3:]]
elif 2 <= i <= 4:
continue
else:
case_info = list(map(int, line.split()))
data["case_ids"].append(case_info[0])
data["quantity"].append(case_info[1])
data["case_length"].append(case_info[2])
data["case_width"].append(case_info[3])
data["case_height"].append(case_info[4])
return data
def write_solution_to_file(solution_file_path: str,
cqm: dimod.ConstrainedQuadraticModel,
vars: "Variables",
sample: dimod.SampleSet,
cases: "Cases",
bins: "Bins",
effective_dimensions: list):
"""Write solution to a file.
Args:
solution_file_path: path to the output solution file. If doesn't exist,
a new file is created.
cqm: A ``dimod.CQM`` object that defines the 3D bin packing problem.
vars: Instance of ``Variables`` that defines the complete set of variables
for the 3D bin packing problem.
sample: A ``dimod.SampleSet`` that represents the best feasible solution found.
cases: Instance of ``Cases``, representing cases packed into containers.
bins: Instance of ``Bins``, representing containers to pack cases into.
effective_dimensions: List of case dimensions based on orientations of cases.
"""
num_cases = cases.num_cases
num_bins = bins.num_bins
lowest_num_bin = bins.lowest_num_bin
dx, dy, dz = effective_dimensions
if num_bins > 1:
num_bin_used = lowest_num_bin + sum([vars.bin_on[j].energy(sample)
for j in range(lowest_num_bin, num_bins)])
else:
num_bin_used = 1
objective_value = cqm.objective.energy(sample)
vs = [['case_id', 'bin-location', 'orientation', 'x', 'y', 'z', "x'",
"y'", "z'"]]
for i in range(num_cases):
vs.append([cases.case_ids[i],
int(sum(int(j == 0) if i == 0 or num_bins == 1 else
(j + 1) * vars.bin_loc[i, j].energy(sample)
for j in range(num_bins))),
int(sum((r + 1) * vars.o[i, r].energy(sample) for r in
range(6))),
np.round(vars.x[i].energy(sample), 2),
np.round(vars.y[i].energy(sample), 2),
np.round(vars.z[i].energy(sample), 2),
np.round(dx[i].energy(sample), 2),
np.round(dy[i].energy(sample), 2),
np.round(dz[i].energy(sample), 2)])
with open(solution_file_path, 'w') as f:
f.write('# Number of bins used: ' + str(int(num_bin_used)) + '\n')
f.write('# Number of cases packed: ' + str(int(num_cases)) + '\n')
f.write(
'# Objective value: ' + str(np.round(objective_value, 3)) + '\n\n')
f.write(tabulate(vs, headers="firstrow"))
f.close()
print(f'Saved solution to '
f'{os.path.join(os.getcwd(), solution_file_path)}')
def write_input_data(data: dict, input_filename: Optional[str] = None) -> str:
"""Convert input data dictionary to an input string and write it to a file.
Args:
data: dictionary containing raw information for both bins and cases
input_filename: name of the file for writing input data
Returns:
input_string: input data information
"""
header = ["case_id", "quantity", "length", "width", "height"]
case_info = [[i, data["quantity"][i], data["case_length"][i],
data["case_width"][i], data["case_height"][i]]
for i in range(len(data['case_ids']))]
input_string = f'# Max num of bins : {data["num_bins"]} \n'
input_string += (f'# Bin dimensions '
f'(L * W * H): {data["bin_dimensions"][0]} '
f'{data["bin_dimensions"][1]} '
f'{data["bin_dimensions"][2]} \n \n')
input_string += tabulate([header, *[v for v in case_info]],
headers="firstrow", colalign='right')
if input_filename is not None:
full_file_path = os.path.join("input", input_filename)
f = open(full_file_path, "w")
f.write(input_string)
f.close()
return input_string