-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfunctions.js
68 lines (59 loc) · 1.81 KB
/
functions.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
function accumulate(numbers) {
let accm = [];
let total = 0;
for (let n of numbers) {
total += n;
accm.push(total)
}
return accm;
}
function bisect_left(arr, target) {
let n = arr.length;
let l = 0;
let r = n - 1;
while (l <= r) {
let m = Math.floor((l + r) / 2);
if (arr[m] < target) {
l = m + 1;
} else if (arr[m] >= target) {
r = m - 1;
}
}
return l;
}
function wchoice(population, weights, accumulated) {
let acm = (accumulated) ? weights : accumulate(weights);
let rnd = Math.random() * acm[acm.length - 1];
let idx = bisect_left(acm, rnd);
return [idx, population[idx]];
}
function wsample(population, weights, k) {
let sample = [];
let indices = [];
let index = 0;
let choice = null;
let acmwts = accumulate(weights);
for (let i = 0; i < k; i++) {
[index, choice] = wchoice(population, acmwts, true);
sample.push(choice);
indices.push(index);
// The below updates the accumulated weights as if the member
// at `index` has a weight of 0, eliminating it from future draws.
// This portion could be optimized. See note below.
let ndecr = weights[index];
for (; index < acmwts.length; index++) {
acmwts[index] -= ndecr;
}
}
return [indices, sample];
}
function getRandomInt(min, max) {
min = Math.ceil(min);
max = Math.floor(max);
return Math.floor(Math.random() * (max - min + 1)) + min;
}
function getStandardDeviation (array) {
const n = array.length;
const mean = array.reduce((a, b) => a + b) / n;
return [mean, Math.sqrt(array.map(x => Math.pow(x - mean, 2)).reduce((a, b) => a + b) / n)];
}