From 347a8864e39b336514127cd2744287fb94677521 Mon Sep 17 00:00:00 2001 From: David Renshaw Date: Thu, 24 Aug 2023 18:19:32 -0400 Subject: [PATCH] [Usa1998Q3] simpler proof of lemma2' --- MathPuzzles/Usa1998Q3.lean | 12 +----------- 1 file changed, 1 insertion(+), 11 deletions(-) diff --git a/MathPuzzles/Usa1998Q3.lean b/MathPuzzles/Usa1998Q3.lean index 3abf5698..f7b365fe 100644 --- a/MathPuzzles/Usa1998Q3.lean +++ b/MathPuzzles/Usa1998Q3.lean @@ -63,17 +63,7 @@ lemma lemma1 (x : ℝ) (hx : x ∈ Set.Ioo 0 (Real.pi / 2)) : · exact hx.2 lemma lemma2' (n : ℕ) : Finset.erase (Finset.range (n + 1)) n = Finset.range n := -by ext a - rw[Finset.mem_erase, Finset.mem_range, Finset.mem_range] - constructor - · intro ⟨ha1, ha2⟩ - obtain h1 | h2 := Iff.mp Order.lt_succ_iff_eq_or_lt ha2 - · exact (ha1 h1).elim - · exact h2 - · intro ha - constructor - · exact Nat.ne_of_lt ha - · exact Nat.lt_add_right a n 1 ha +by rw[←Nat.succ_eq_add_one, Finset.range_succ]; simp lemma lemma2 (f : ℕ → ℝ) : ∏ i in Finset.range (n + 1), ∏ j in Finset.erase (Finset.range (n + 1)) i, f j =