-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject1nonogramFinalOptimized.py
279 lines (240 loc) · 14.6 KB
/
project1nonogramFinalOptimized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from z3 import *
import numpy as np
import time # Import the time module
#########################################################################################################
# Recursive function that computes all possibilities of placing the remaining blocks, #
# starting at a given index #
# 'constraints': list with blocks left to place; #
# 'i': placing index #
# 'sz': size of the row/column #
# 'currPerm': current permutation of placing the blocks in the row/column #
# 'Perms': list with all possibilities of placing the blocks in the row/column according to constraints #
# 'Knowns': if not 'None', then permutations were previously computed and these some cells may already #
# have their value set (either to '1' or '0')
#########################################################################################################
def computePermsAux(constraints: list, i: int, sz: int, currPerm: list, Perms: list, Knowns: np.array=None):
# Base case #1: index i is the end of the row/column; add the current permutation to the set
if i == sz:
Perms.append(currPerm.copy())
return
# Base case #2: no blocks left to place; fill the row/column with zeros
if len(constraints) == 0:
# If we have know constraints and the current perm is conflicting with them, ignore the permutation
if Knowns is not None and any(Knowns[i:] == 1):
return
currPerm[i:] = [0]*(sz - i)
Perms.append(currPerm.copy())
return
# Possibility (i): place a blank space if possible
whiteSpaces = sz - i - sum(constraints) - (len(constraints) - 1)
if whiteSpaces > 0:
if Knowns is None or not Knowns[i] == 1:
currPerm[i] = 0
computePermsAux(constraints, i+1, sz, currPerm, Perms, Knowns)
# Possibility (ii): place a block of the required size
blockSize = constraints[0]
if Knowns is not None and any(Knowns[i:i+blockSize] == 0):
return
currPerm[i:i+blockSize] = [1]*blockSize
if len(constraints) > 1:
if Knowns is not None and Knowns[i+blockSize] == 1:
return
currPerm[i+blockSize] = 0
blockSize += 1
computePermsAux(constraints[1:], i+blockSize, sz, currPerm, Perms, Knowns)
########################################################################################################
# Driver function to compute all possibilities (permutations) of fitting the blocks in in a row/column #
# 'constraints': block to place in the row/column #
# 'sz': length of the row/column #
# 'Knowns': if not 'None', then permutations were previously computed and some cells may already #
# have their value set (either to '1' or '0') #
# Returns: list with all permutations #
########################################################################################################
def computePerms(constraints: list, sz: int, Knowns : np.array=None) -> list:
Perms = []
computePermsAux(constraints, 0, sz, [0]*sz, Perms, Knowns)
return Perms
#############################################################################################
# Optimized function that solves a Nonogram puzzle. Computes permutations twice in order to #
# reduce the number of constraints of the problem. #
# 'V': vertical constraints #
# 'H': horizontal constraints #
# Returns: (sat, solvedPuzzle), if satisfiable; (unsat, []), otherwise, where solvedPuzzle #
# is a string with the solution of the puzzle in a human-readable format #
#############################################################################################
def nonogram_optimized(V: list, H: list) -> (bool,list):
# Number of rows and columns, respectively
R, C = len(H), len(V)
s = Solver()
# Measure the time for resolution
start_time = time.time() # Start timer
P = [[Bool(f'p_{i}_{j}') for j in range(C)] for i in range(R)]
Paux = np.array([-1] * (R*C)).reshape((R, C))
for row, rowConstraint in enumerate(H):
perms = np.array(computePerms(rowConstraint, C))
permsSum = perms.sum(axis=0)
# Set the value of a cell, if it is filled...
Paux[row, permsSum == len(perms)] = 1
# ... or blank in all permutations
Paux[row, permsSum == 0] = 0
for col, colConstraint in enumerate(V):
perms = np.array(computePerms(colConstraint, R))
permsSum = perms.sum(axis=0)
Paux[permsSum == len(perms), col] = 1
Paux[permsSum == 0, col] = 0
# Add as constraints the literals corresponding to the cells that are filled or blank
for r in range(R):
for c in range(C):
if Paux[r,c] == 1:
s.add(P[r][c])
if Paux[r,c] == 0:
s.add(Not(P[r][c]))
# Horizontal Constraints
for row, rowConstraint in enumerate(H):
# Ignore permutations that do not comply with the already set literals
perms = computePerms(rowConstraint, C, Knowns=Paux[row,])
# Remove the set literals from all permutations
s.add(Or( *(And( [P[row][j] if p else Not(P[row][j]) for (j,p) in enumerate(pm)]) for pm in perms) ))
# Vertical Constraints
for col, colConstraint in enumerate(V):
perms = computePerms(colConstraint, R, Knowns=Paux[:,col])
s.add(Or( *(And( [P[i][col] if p else Not(P[i][col]) for (i,p) in enumerate(pm)]) for pm in perms) ))
if s.check() == sat:
m = s.model()
solvedPuzzle = '\n'.join(['|' + '|'.join(['X' if m[P[i][j]] else ' ' for j in range(C)]) + '|' for i in range(R)])
end_time = time.time() # End timer
elapsed_time = (end_time - start_time) * 1000 # Calculate time in milliseconds
print(f'Found a solution:\n{solvedPuzzle}')
print(f"Resolution time: {elapsed_time:.2f} milliseconds")
return (sat, solvedPuzzle)
else:
print('No solution found')
return (unsat,[])
#############################################################################################
# Optimized function that checks if a Nonogram puzzle is well-posed, that is, if it has a #
# unique solution. Encodes the puzzle as a SAT problem, as in function 'nonogram()'. If #
# the puzzle is not well-posed because there are multiple solutions, the function prints #
# two solutions. If the puzzle is not well-posed because there is not solution, it states #
# so. #
# 'V': vertical constraints #
# 'H': horizontal constraints #
# Returns: True, if the puzzle is well-posed; and False, otherwise. #
# () #
#############################################################################################
def well_posed_optimized(V: list, H: list) -> (bool):
s = Solver()
R, C = len(H), len(V)
# Measure the time for resolution
start_time = time.time() # Start timer
P = [[Bool(f'p_{i}_{j}') for j in range(C)] for i in range(R)]
# Precompute known literals from row and column constraints
Paux = np.array([-1] * (R * C)).reshape((R, C))
# Process rows
for row, rowConstraint in enumerate(H):
perms = np.array(computePerms(rowConstraint, C))
permsSum = perms.sum(axis=0)
Paux[row, permsSum == len(perms)] = 1 # Cell filled in all permutations
Paux[row, permsSum == 0] = 0 # Cell blank in all permutations
# Process columns
for col, colConstraint in enumerate(V):
perms = np.array(computePerms(colConstraint, R))
permsSum = perms.sum(axis=0)
Paux[permsSum == len(perms), col] = 1 # Cell filled in all permutations
Paux[permsSum == 0, col] = 0 # Cell blank in all permutations
# Add known values as constraints
for r in range(R):
for c in range(C):
if Paux[r, c] == 1:
s.add(P[r][c])
elif Paux[r, c] == 0:
s.add(Not(P[r][c]))
# Horizontal Constraints
for row, rowConstraint in enumerate(H):
perms = computePerms(rowConstraint, C, Knowns=Paux[row,])
s.add(Or( *(And([P[row][j] if p else Not(P[row][j]) for (j, p) in enumerate(pm)]) for pm in perms) ))
# Vertical Constraints
for col, colConstraint in enumerate(V):
perms = computePerms(colConstraint, R, Knowns=Paux[:, col])
s.add(Or( *(And([P[i][col] if p else Not(P[i][col]) for (i, p) in enumerate(pm)]) for pm in perms) ))
# First SAT check (to find a solution)
if s.check() == sat:
m = s.model()
# First solution
sol1 = '\n'.join(['|' + '|'.join(['X' if is_true(m.evaluate(P[i][j])) else ' ' for j in range(C)]) + '|' for i in range(R)])
# Add negation of the current solution (ensure at least one cell is different)
s.add(Or( *(Not(P[i][j]) for i in range(R) for j in range(C) if is_true(m.evaluate(P[i][j]))) ))
# Second SAT check (to look for another solution)
if s.check() == sat:
m = s.model()
sol2 = '\n'.join(['|' + '|'.join(['X' if is_true(m.evaluate(P[i][j])) else ' ' for j in range(C)]) + '|' for i in range(R)])
end_time = time.time() # End timer
elapsed_time = (end_time - start_time) * 1000 # Calculate time in milliseconds
print(f"The problem is not well-posed: it has more than one solution:\n{sol1}\nand\n{sol2}")
print(f"Resolution time: {elapsed_time:.2f} milliseconds")
return False
end_time = time.time() # End timer
elapsed_time = (end_time - start_time) * 1000 # Calculate time in milliseconds
print(f"The problem is well-posed! Solution:\n{sol1}")
print(f"Resolution time: {elapsed_time:.2f} milliseconds")
return True
else:
end_time = time.time() # End timer
elapsed_time = (end_time - start_time) * 1000 # Calculate time in milliseconds
print('The problem is not well-posed: it has no solution!')
print(f"Resolution time: {elapsed_time:.2f} milliseconds")
return False
#############################################################################################
# Function that verifies if the constraints are valid: all block sizes are positive and fit #
# within the row/colum. #
# 'V': vertical constraints #
# 'H': horizontal constraints #
# Returns: True, if the constraints are valid; and False, otherwise. #
#############################################################################################
def checkConstraints(H : list, V : list) -> bool:
R, C = len(H), len(V)
for h_const in H:
if not all([c > 0 for c in h_const]):
print(f"Invalid Horizontal Constraint {h_const}: All values must be positive\nExiting...")
return False
if sum(h_const) + len(h_const) - 1 > C:
print(f"Invalid Horizontal Constraint {h_const}: Needed length ({sum(h_const) + len(h_const) - 1}) exceeds number of columns ({C})\nExiting...")
return False
for v_const in V:
if not all([c > 0 for c in v_const]):
print(f"Invalid Vertical Constraint {v_const}: All values must be positive\nExiting...")
return False
if sum(v_const) + len(v_const) - 1 > R:
print(f"Invalid Vertical Constraint {v_const}: Needed length ({sum(v_const) + len(v_const) - 1}) exceeds number of rows ({R})\nExiting...")
return False
return True
#############################################################################################
# Example usage
#############################################################################################
if __name__ == "__main__":
## Well-posed Nonogram (5x5 grid)
#V_well = [[1], [1], [1], [1], [1]]
#H_well = [[1], [1], [1], [1], [1]]
## Not well-posed Nonogram (5x5 grid)
#V_not_well = [[1], [1], [1], [1], [1]]
#H_not_well = [[1], [2], [1], [1], [1]]
# 25x25 puzzle, not well-posed, NO SOLUTION?
#H = [[6, 1], [5, 2], [18], [6, 1], [11], [7, 1], [6], [4, 1], [1, 7], [7, 5], [4, 10], [5, 10], [8, 4, 2], [13], [4, 1], [9, 1, 4], [12, 7], [13], [8], [11, 7], [2, 3, 4], [10], [19], [3, 3], [4, 5]]
#V = [[1, 3, 1], [1, 4], [1, 4, 4], [1, 4, 1], [1, 4, 1], [1, 5, 1], [1, 4, 1], [3, 1, 1], [3, 1, 5], [3, 1, 1], [2, 1, 1], [4, 1], [4, 6], [1, 2, 6], [4, 1], [4, 1], [4, 1, 1], [4, 1, 2], [4, 1, 2], [6, 1, 3], [4, 1, 1], [1, 1, 1], [1, 2, 1], [1, 2, 1], [1, 3, 1]]
# 25x25 puzzle, well-posed
#H = [[6,10,3],[4,6,7],[18],[6,10,3],[11,1,1],[7,8],[6,1,1],[4,8],[1,3,7],[7,5,2,1],[4,10,2],[5,10,2],[8,6,4,2],[13,3],[4,8],[9,2,1,4],[12,7,1],[13,3,2],[8,4],[11,7,1],[2,3,4,3],[10,11],[19],[3,3,9],[4,5,7,1]]
#V = [[1,3,1,3,8,1],[1,4,15],[1,4,10,4],[1,4,16],[1,4,1,12],[1,5,1,2,10],[1,4,1,2,5,4],[3,1,1,1,2,5,4],[3,1,5,1,3,1,2,1],[3,1,1,6,2,1,2,1],[2,1,1,4,3,1,1],[4,1,5,3,1],[4,6,1,1],[1,2,6,1,1,1],[4,1,5,1,2,1],[4,1,4,2,1,2,1],[4,1,1,2,1,2,6],[4,1,2,2,2,2,6],[4,1,2,3,2,6],[6,1,3,1,3,2],[4,1,1,1,1,1,1,1,1],[1,1,1,1,1,3,1,1,1],[1,2,1,3,1,2,1],[1,2,1,3,1,2,2,1],[1,3,1,4,7,2]]
# 25x25 puzzle, not well-posed (multiple solutions expected)
H = [[5], [5], [5], [5], [5],
[3, 1], [3, 1], [3, 1], [3, 1], [3, 1],
[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1],
[5], [5], [5], [5], [5],
[2, 2], [2, 2], [2, 2], [2, 2], [2, 2]]
V = [[5], [5], [5], [5], [5],
[3, 1], [3, 1], [3, 1], [3, 1], [3, 1],
[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1],
[5], [5], [5], [5], [5],
[2, 2], [2, 2], [2, 2], [2, 2], [2, 2]]
print("Checking well-posedness of Nonogram:")
if not checkConstraints(H, V):
exit(1)
well_posed_optimized(V, H)