-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdensenet.py
executable file
·220 lines (183 loc) · 9.68 KB
/
densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as cp
from collections import OrderedDict
"""
this code was copied from : https://github.com/Duplums/yAwareContrastiveLearning/blob/main/models/densenet.py
MODIFIED : `encoder`, `classifier` 두가지 모드가 있는데, encoder을 쓰려고 했는데 flatten후에 lienar layer몇개 거쳐서 (projector and so on), barlowtwins에서 Resent50에서 flatten만 하도록 고쳐쓴 것 처럼, 쳐기서도 flatten만 하도록 고쳐쓰기로함 (뒤에 linear layer들은 안하고)
-> 그러기 위해서, `encoder`, `classifier` 이 아닌, `CNN_flatten` 모드를 만들었다!
"""
def _bn_function_factory(norm, relu, conv):
def bn_function(*inputs):
concated_features = torch.cat(inputs, 1)
bottleneck_output = conv(relu(norm(concated_features)))
return bottleneck_output
return bn_function
class _DenseLayer(nn.Sequential):
def __init__(self, num_input_features, growth_rate, bn_size, drop_rate, memory_efficient=False):
super(_DenseLayer, self).__init__()
self.add_module('norm1', nn.BatchNorm3d(num_input_features)),
self.add_module('relu1', nn.ReLU(inplace=True)),
self.add_module('conv1', nn.Conv3d(num_input_features, bn_size *
growth_rate, kernel_size=1, stride=1,
bias=False)),
self.add_module('norm2', nn.BatchNorm3d(bn_size * growth_rate)),
self.add_module('relu2', nn.ReLU(inplace=True)),
self.add_module('conv2', nn.Conv3d(bn_size * growth_rate, growth_rate,
kernel_size=3, stride=1, padding=1,
bias=False)),
self.drop_rate = drop_rate
self.memory_efficient = memory_efficient
def forward(self, *prev_features):
bn_function = _bn_function_factory(self.norm1, self.relu1, self.conv1)
if self.memory_efficient and any(prev_feature.requires_grad for prev_feature in prev_features):
bottleneck_output = cp.checkpoint(bn_function, *prev_features)
else:
bottleneck_output = bn_function(*prev_features)
new_features = self.conv2(self.relu2(self.norm2(bottleneck_output)))
if self.drop_rate > 0:
new_features = F.dropout(new_features, p=self.drop_rate, training=self.training)
return new_features
class _DenseBlock(nn.Module):
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate, memory_efficient=False):
super(_DenseBlock, self).__init__()
for i in range(num_layers):
layer = _DenseLayer(
num_input_features + i * growth_rate,
growth_rate=growth_rate,
bn_size=bn_size,
drop_rate=drop_rate,
memory_efficient=memory_efficient,
)
self.add_module('denselayer%d' % (i + 1), layer)
def forward(self, init_features):
features = [init_features]
for name, layer in self.named_children():
new_features = layer(*features)
features.append(new_features)
return torch.cat(features, 1)
class _Transition(nn.Sequential):
def __init__(self, num_input_features, num_output_features):
super(_Transition, self).__init__()
self.add_module('norm', nn.BatchNorm3d(num_input_features))
self.add_module('relu', nn.ReLU(inplace=True))
self.add_module('conv', nn.Conv3d(num_input_features, num_output_features,
kernel_size=1, stride=1, bias=False))
self.add_module('pool', nn.AvgPool3d(kernel_size=2, stride=2))
class DenseNet(nn.Module):
r"""3D-DenseNet model class, based on
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
growth_rate (int) - how many filters to add each layer (`k` in paper)
block_config (list of 4 ints) - how many layers in each pooling block
num_init_features (int) - the number of filters to learn in the first convolution layer
bn_size (int) - multiplicative factor for number of bottle neck layers
(i.e. bn_size * k features in the bottleneck layer)
drop_rate (float) - dropout rate after each dense layer
num_classes (int) - number of classification classes (if 'classifier' mode)
in_channels (int) - number of input channels (1 for sMRI)
mode (str) - specify in which mode DenseNet is trained on -- must be "encoder" or "classifier"
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
def __init__(self, growth_rate=32, block_config=(3, 12, 24, 16),
num_init_features=64, bn_size=4, drop_rate=0, num_classes=1000, in_channels=1,
mode="encoder", memory_efficient=False):
super(DenseNet, self).__init__()
assert mode in {'encoder', 'classifier', "CNN_flatten", "barlow_encoder"}, "Unknown mode selected: %s"%mode
# First convolution
self.features = nn.Sequential(OrderedDict([
('conv0', nn.Conv3d(in_channels, num_init_features, kernel_size=7, stride=2,
padding=3, bias=False)),
('norm0', nn.BatchNorm3d(num_init_features)),
('relu0', nn.ReLU(inplace=True)),
('pool0', nn.MaxPool3d(kernel_size=3, stride=2, padding=1)),
]))
self.mode = mode
# Each denseblock
num_features = num_init_features
for i, num_layers in enumerate(block_config):
block = _DenseBlock(
num_layers=num_layers,
num_input_features=num_features,
bn_size=bn_size,
growth_rate=growth_rate,
drop_rate=drop_rate,
memory_efficient=memory_efficient
)
self.features.add_module('denseblock%d' % (i + 1), block)
num_features = num_features + num_layers * growth_rate
if i != len(block_config) - 1:
trans = _Transition(num_input_features=num_features,
num_output_features=num_features // 2)
self.features.add_module('transition%d' % (i + 1), trans)
num_features = num_features // 2
self.num_features = num_features
if self.mode == "classifier":
# Final batch norm
self.features.add_module('norm5', nn.BatchNorm3d(num_features))
# Linear layer
self.classifier = nn.Linear(num_features, num_classes)
elif self.mode == "encoder":
self.hidden_representation = nn.Linear(num_features, 512)
self.head_projection = nn.Linear(512, 128)
#=======ADDED SOME MODES============#
elif self.mode == "CNN_flatten": ##추가한 것
pass #아무것도 추가적으로 정의해줄 필요 없다
elif self.mode == "barlow_encoder":
#fc layer
self.fc = nn.Linear(num_features, num_classes)
#===================================#
# Init. with kaiming
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight)
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.constant_(m.bias, 0)
def forward(self, x):
## Eventually keep the input images for visualization
self.input_imgs = x.detach().cpu().numpy()
features = self.features(x)
if self.mode == "classifier":
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool3d(out, 1)
out = torch.flatten(out, 1)
out = self.classifier(out)
elif self.mode == "encoder":
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool3d(out, 1)
out = torch.flatten(out, 1)
out = self.hidden_representation(out)
out = F.relu(out, inplace=True)
out = self.head_projection(out)
#=======ADDED SOME MODES============#
elif self.mode == "CNN_flatten":
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool3d(out, 1)
out = torch.flatten(out, 1)
elif self.mode == "barlow_encoder":
out = F.relu(features, inplace=True)
out = F.adaptive_avg_pool3d(out, 1)
out = torch.flatten(out, 1)
out = self.fc(out) #passes through on fc layer
#===================================#
return out.squeeze(dim=1) #, features #if you want to check the feature size (CNN output before flattening)
def get_current_visuals(self):
return self.input_imgs
def _densenet(arch, growth_rate, block_config, num_init_features, **kwargs):
model = DenseNet(growth_rate, block_config, num_init_features, **kwargs)
return model
def densenet121(**kwargs):
r"""Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient,
but slower. Default: *False*. See `"paper" <https://arxiv.org/pdf/1707.06990.pdf>`_
"""
return _densenet('densenet121', 32, (6, 12, 24, 16), 64, **kwargs)