forked from cp2k/cp2k
-
Notifications
You must be signed in to change notification settings - Fork 0
/
atom_output.F
870 lines (803 loc) · 40.8 KB
/
atom_output.F
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
!--------------------------------------------------------------------------------------------------!
! CP2K: A general program to perform molecular dynamics simulations !
! Copyright 2000-2023 CP2K developers group <https://cp2k.org> !
! !
! SPDX-License-Identifier: GPL-2.0-or-later !
!--------------------------------------------------------------------------------------------------!
! **************************************************************************************************
!> \brief Routines that print various information about an atomic kind.
! **************************************************************************************************
MODULE atom_output
USE atom_types, ONLY: &
atom_basis_type, atom_gthpot_type, atom_potential_type, atom_state, atom_type, cgto_basis, &
ecp_pseudo, gth_pseudo, gto_basis, lmat, no_pseudo, num_basis, sgp_pseudo, sto_basis, &
upf_pseudo
USE atom_utils, ONLY: get_maxl_occ,&
get_maxn_occ,&
get_rho0
USE cp_files, ONLY: close_file,&
open_file
USE input_constants, ONLY: &
barrier_conf, do_dkh0_atom, do_dkh1_atom, do_dkh2_atom, do_dkh3_atom, do_nonrel_atom, &
do_rhf_atom, do_rks_atom, do_rohf_atom, do_sczoramp_atom, do_uhf_atom, do_uks_atom, &
do_zoramp_atom, poly_conf, xc_none
USE input_cp2k_check, ONLY: xc_functionals_expand
USE input_section_types, ONLY: section_vals_get_subs_vals,&
section_vals_get_subs_vals2,&
section_vals_type,&
section_vals_val_get
USE kinds, ONLY: default_string_length,&
dp
USE mathconstants, ONLY: dfac,&
pi
USE periodic_table, ONLY: ptable
USE physcon, ONLY: evolt
USE xc_derivatives, ONLY: xc_functional_get_info
USE xc_libxc, ONLY: libxc_check_existence_in_libxc,&
libxc_get_reference_length
#include "./base/base_uses.f90"
IMPLICIT NONE
PRIVATE
CHARACTER(len=*), PARAMETER, PRIVATE :: moduleN = 'atom_output'
PUBLIC :: atom_print_state, atom_print_energies, atom_print_iteration, &
atom_print_basis, atom_print_method, atom_print_info, atom_print_potential, &
atom_print_basis_file, atom_write_pseudo_param, atom_print_orbitals, &
atom_print_zmp_iteration
CONTAINS
! **************************************************************************************************
!> \brief Print an information string related to the atomic kind.
!> \param zval atomic number
!> \param info information string
!> \param iw output file unit
!> \par History
!> * 09.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_info(zval, info, iw)
INTEGER, INTENT(IN) :: zval
CHARACTER(len=*), INTENT(IN) :: info
INTEGER, INTENT(IN) :: iw
WRITE (iw, '(/," ",A,T40,A," [",A,"]",T62,"Atomic number:",T78,I3,/)') &
ADJUSTL(TRIM(info)), TRIM(ptable(zval)%name), TRIM(ptable(zval)%symbol), zval
END SUBROUTINE atom_print_info
! **************************************************************************************************
!> \brief Print information about electronic state.
!> \param state electronic state
!> \param iw output file unit
!> \par History
!> * 02.2010 unrestricted KS and HF methods [Juerg Hutter]
!> * 11.2009 print multiplicity [Juerg Hutter]
!> * 08.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_state(state, iw)
TYPE(atom_state) :: state
INTEGER, INTENT(IN) :: iw
CHARACTER(LEN=1), DIMENSION(0:7), PARAMETER :: &
label = (/"S", "P", "D", "F", "G", "H", "I", "K"/)
INTEGER :: j, l, mc, mlc, mlo, mm(0:lmat), mo
CPASSERT(lmat <= 7)
WRITE (iw, '(/,T2,A)') "Electronic structure"
WRITE (iw, '(T5,A,T71,F10.2)') "Total number of core electrons", SUM(state%core)
WRITE (iw, '(T5,A,T71,F10.2)') "Total number of valence electrons", SUM(state%occ)
WRITE (iw, '(T5,A,T71,F10.2)') "Total number of electrons", SUM(state%occ + state%core)
SELECT CASE (state%multiplicity)
CASE (-1)
WRITE (iw, '(T5,A,T68,A)') "Multiplicity", "not specified"
CASE (-2)
WRITE (iw, '(T5,A,T72,A)') "Multiplicity", "high spin"
CASE (-3)
WRITE (iw, '(T5,A,T73,A)') "Multiplicity", "low spin"
CASE (1)
WRITE (iw, '(T5,A,T74,A)') "Multiplicity", "singlet"
CASE (2)
WRITE (iw, '(T5,A,T74,A)') "Multiplicity", "doublet"
CASE (3)
WRITE (iw, '(T5,A,T74,A)') "Multiplicity", "triplet"
CASE (4)
WRITE (iw, '(T5,A,T74,A)') "Multiplicity", "quartet"
CASE (5)
WRITE (iw, '(T5,A,T74,A)') "Multiplicity", "quintet"
CASE (6)
WRITE (iw, '(T5,A,T75,A)') "Multiplicity", "sextet"
CASE (7)
WRITE (iw, '(T5,A,T75,A)') "Multiplicity", "septet"
CASE DEFAULT
END SELECT
mlo = get_maxl_occ(state%occ)
mlc = get_maxl_occ(state%core)
mm = get_maxn_occ(state%core)
IF (state%multiplicity == -1) THEN
DO l = 0, MAX(mlo, mlc)
mo = state%maxn_occ(l)
IF (SUM(state%core(l, :)) == 0) THEN
WRITE (iw, '(A5,T10,10F6.2)') label(l), (state%occ(l, j), j=1, mo)
ELSE
mc = mm(l)
CPASSERT(SUM(state%occ(l, 1:mc)) == 0)
WRITE (iw, ADVANCE="no", FMT='(A5,T9,A1,10F6.2)') label(l), "[", (state%core(l, j), j=1, mc)
WRITE (iw, FMT='(A1,F5.2,10F6.2)') "]", (state%occ(l, j), j=mc + 1, mc + mo)
END IF
END DO
ELSE
WRITE (iw, '(T5,A)') "Alpha Electrons"
DO l = 0, MAX(mlo, mlc)
mo = state%maxn_occ(l)
IF (SUM(state%core(l, :)) == 0) THEN
WRITE (iw, '(A5,T10,10F6.2)') label(l), (state%occa(l, j), j=1, mo)
ELSE
mc = mm(l)
WRITE (iw, ADVANCE="no", FMT='(A5,T9,A1,10F6.2)') label(l), "[", (0.5_dp*state%core(l, j), j=1, mc)
WRITE (iw, FMT='(A1,F5.2,10F6.2)') "]", (state%occa(l, j), j=1, mo)
END IF
END DO
WRITE (iw, '(T5,A)') "Beta Electrons"
DO l = 0, MAX(mlo, mlc)
mo = state%maxn_occ(l)
IF (SUM(state%core(l, :)) == 0) THEN
WRITE (iw, '(A5,T10,10F6.2)') label(l), (state%occb(l, j), j=1, mo)
ELSE
mc = mm(l)
WRITE (iw, ADVANCE="no", FMT='(A5,T9,A1,10F6.2)') label(l), "[", (0.5_dp*state%core(l, j), j=1, mc)
WRITE (iw, FMT='(A1,F5.2,10F6.2)') "]", (state%occb(l, j), j=1, mo)
END IF
END DO
END IF
WRITE (iw, *)
END SUBROUTINE atom_print_state
! **************************************************************************************************
!> \brief Print energy components.
!> \param atom information about the atomic kind
!> \param iw output file unit
!> \par History
!> * 05.2010 print virial coefficient [Juerg Hutter]
!> * 02.2010 unrestricted KS and HF methods [Juerg Hutter]
!> * 09.2008 print orbital energies [Juerg Hutter]
!> * 08.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_energies(atom, iw)
TYPE(atom_type) :: atom
INTEGER, INTENT(IN) :: iw
INTEGER :: i, l, n
REAL(KIND=dp) :: drho
WRITE (iw, '(/,A,T36,A,T61,F20.12)') " Energy components [Hartree]", &
" Total Energy ::", atom%energy%etot
WRITE (iw, '(T36,A,T61,F20.12)') " Band Energy ::", atom%energy%eband
WRITE (iw, '(T36,A,T61,F20.12)') " Kinetic Energy ::", atom%energy%ekin
WRITE (iw, '(T36,A,T61,F20.12)') "Potential Energy ::", atom%energy%epot
IF (atom%energy%ekin /= 0.0_dp) THEN
WRITE (iw, '(T36,A,T61,F20.12)') " Virial (-V/T) ::", -atom%energy%epot/atom%energy%ekin
END IF
WRITE (iw, '(T36,A,T61,F20.12)') " Core Energy ::", atom%energy%ecore
IF (atom%energy%exc /= 0._dp) &
WRITE (iw, '(T36,A,T61,F20.12)') " XC Energy ::", atom%energy%exc
WRITE (iw, '(T36,A,T61,F20.12)') " Coulomb Energy ::", atom%energy%ecoulomb
IF (atom%energy%eexchange /= 0._dp) &
WRITE (iw, '(T34,A,T61,F20.12)') "HF Exchange Energy ::", atom%energy%eexchange
IF (atom%potential%ppot_type /= NO_PSEUDO) THEN
WRITE (iw, '(T20,A,T61,F20.12)') " Total Pseudopotential Energy ::", atom%energy%epseudo
WRITE (iw, '(T20,A,T61,F20.12)') " Local Pseudopotential Energy ::", atom%energy%eploc
IF (atom%energy%elsd /= 0._dp) &
WRITE (iw, '(T20,A,T61,F20.12)') " Local Spin-potential Energy ::", atom%energy%elsd
WRITE (iw, '(T20,A,T61,F20.12)') " Nonlocal Pseudopotential Energy ::", atom%energy%epnl
END IF
IF (atom%potential%confinement) THEN
WRITE (iw, '(T36,A,T61,F20.12)') " Confinement ::", atom%energy%econfinement
END IF
IF (atom%state%multiplicity == -1) THEN
WRITE (iw, '(/,A,T20,A,T30,A,T36,A,T49,A,T71,A,/)') " Orbital energies", &
"State", "L", "Occupation", "Energy[a.u.]", "Energy[eV]"
DO l = 0, atom%state%maxl_calc
n = atom%state%maxn_calc(l)
DO i = 1, n
WRITE (iw, '(T23,I2,T30,I1,T36,F10.3,T46,F15.6,T66,F15.6)') &
i, l, atom%state%occupation(l, i), atom%orbitals%ener(i, l), atom%orbitals%ener(i, l)*evolt
END DO
IF (n > 0) WRITE (iw, *)
END DO
ELSE
WRITE (iw, '(/,A,T20,A,T30,A,T36,A,T42,A,T55,A,T71,A,/)') " Orbital energies", &
"State", "Spin", "L", "Occupation", "Energy[a.u.]", "Energy[eV]"
DO l = 0, atom%state%maxl_calc
n = atom%state%maxn_calc(l)
DO i = 1, n
WRITE (iw, '(T23,I2,T29,A,T36,I1,T42,F10.3,T52,F15.6,T68,F13.6)') &
i, "alpha", l, atom%state%occa(l, i), atom%orbitals%enera(i, l), atom%orbitals%enera(i, l)*evolt
END DO
DO i = 1, n
WRITE (iw, '(T23,I2,T29,A,T36,I1,T42,F10.3,T52,F15.6,T68,F13.6)') &
i, " beta", l, atom%state%occb(l, i), atom%orbitals%enerb(i, l), atom%orbitals%enerb(i, l)*evolt
END DO
IF (n > 0) WRITE (iw, *)
END DO
END IF
CALL get_rho0(atom, drho)
WRITE (iw, '(/,A,T66,F15.6)') " Total Electron Density at R=0: ", drho
END SUBROUTINE atom_print_energies
! **************************************************************************************************
!> \brief Printing of the atomic iterations when ZMP is active.
!> \param iter current iteration number
!> \param deps convergence
!> \param atom intormation about the atomic kind
!> \param iw output file unit
!> \author D. Varsano [[email protected]]
! **************************************************************************************************
SUBROUTINE atom_print_zmp_iteration(iter, deps, atom, iw)
INTEGER, INTENT(IN) :: iter
REAL(dp), INTENT(IN) :: deps
TYPE(atom_type), INTENT(IN) :: atom
INTEGER, INTENT(IN) :: iw
IF (iter == 1) THEN
WRITE (iw, '(/," ",79("*"),/,T33,"Integral",T48,"Integral",/,T3,A,T16,A,T33,A,T46,A,T69,A/," ",79("*"))') &
"Iteration", "Convergence", "rho diff.", "rho*v_xc[au]", "Energy[au]"
END IF
WRITE (iw, '(T3,I9,T15,G13.6,T30,G13.6,T46,G13.6,T61,F20.12)') iter, deps, atom%rho_diff_integral, &
atom%energy%exc, atom%energy%etot
END SUBROUTINE atom_print_zmp_iteration
! **************************************************************************************************
!> \brief Print convergence information.
!> \param iter current iteration number
!> \param deps convergency
!> \param etot total energy
!> \param iw output file unit
!> \par History
!> * 08.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_iteration(iter, deps, etot, iw)
INTEGER, INTENT(IN) :: iter
REAL(dp), INTENT(IN) :: deps, etot
INTEGER, INTENT(IN) :: iw
IF (iter == 1) THEN
WRITE (iw, '(/," ",79("*"),/,T19,A,T38,A,T70,A,/," ",79("*"))') &
"Iteration", "Convergence", "Energy [au]"
END IF
WRITE (iw, '(T20,i8,T34,G14.6,T61,F20.12)') iter, deps, etot
END SUBROUTINE atom_print_iteration
! **************************************************************************************************
!> \brief Print atomic basis set.
!> \param atom_basis atomic basis set
!> \param iw output file unit
!> \param title header to print on top of the basis set
!> \par History
!> * 09.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_basis(atom_basis, iw, title)
TYPE(atom_basis_type) :: atom_basis
INTEGER, INTENT(IN) :: iw
CHARACTER(len=*) :: title
INTEGER :: i, j, l
WRITE (iw, '(/,A)') TRIM(title)
SELECT CASE (atom_basis%basis_type)
CASE (GTO_BASIS)
IF (atom_basis%geometrical) THEN
WRITE (iw, '(/," ",21("*"),A,22("*"))') " Geometrical Gaussian Type Orbitals "
WRITE (iw, '(A,F15.8,T41,A,F15.8)') " Initial exponent: ", atom_basis%aval, &
" Proportionality factor: ", atom_basis%cval
ELSE
WRITE (iw, '(/," ",21("*"),A,21("*"))') " Uncontracted Gaussian Type Orbitals "
END IF
DO l = 0, lmat
IF (atom_basis%nbas(l) > 0) THEN
SELECT CASE (l)
CASE DEFAULT
WRITE (iw, '(/,T2,A,(T30,I5,T51,F30.8))') &
"X Exponents: ", (i, atom_basis%am(i, l), i=1, atom_basis%nbas(l))
CASE (0)
WRITE (iw, '(/,T2,A,(T30,I5,T51,F30.8))') &
"s Exponents: ", (i, atom_basis%am(i, 0), i=1, atom_basis%nbas(0))
CASE (1)
WRITE (iw, '(/,T2,A,(T30,I5,T51,F30.8))') &
"p Exponents: ", (i, atom_basis%am(i, 1), i=1, atom_basis%nbas(1))
CASE (2)
WRITE (iw, '(/,T2,A,(T30,I5,T51,F30.8))') &
"d Exponents: ", (i, atom_basis%am(i, 2), i=1, atom_basis%nbas(2))
CASE (3)
WRITE (iw, '(/,T2,A,(T30,I5,T51,F30.8))') &
"f Exponents: ", (i, atom_basis%am(i, 3), i=1, atom_basis%nbas(3))
END SELECT
END IF
END DO
WRITE (iw, '(" ",79("*"))')
CASE (CGTO_BASIS)
WRITE (iw, '(/," ",22("*"),A,22("*"))') " Contracted Gaussian Type Orbitals "
DO l = 0, lmat
IF (atom_basis%nbas(l) > 0) THEN
IF (l == 0) WRITE (iw, '(A)') " s Functions"
IF (l == 1) WRITE (iw, '(A)') " p Functions"
IF (l == 2) WRITE (iw, '(A)') " d Functions"
IF (l == 3) WRITE (iw, '(A)') " f Functions"
IF (l >= 3) WRITE (iw, '(A)') " x Functions"
DO i = 1, atom_basis%nprim(l)
WRITE (iw, '(F15.6,5(T21,6F10.6,/))') &
atom_basis%am(i, l), (atom_basis%cm(i, j, l), j=1, atom_basis%nbas(l))
END DO
END IF
END DO
WRITE (iw, '(" ",79("*"))')
CASE (STO_BASIS)
WRITE (iw, '(/," ",28("*"),A,29("*"))') " Slater Type Orbitals "
DO l = 0, lmat
DO i = 1, atom_basis%nbas(l)
SELECT CASE (l)
CASE DEFAULT
WRITE (iw, '(T10,I1,A,T40,F25.12)') atom_basis%ns(i, l), "X Exponent :", atom_basis%as(i, l)
CASE (0)
WRITE (iw, '(T10,I1,A,T40,F25.12)') atom_basis%ns(i, 0), "S Exponent :", atom_basis%as(i, 0)
CASE (1)
WRITE (iw, '(T10,I1,A,T40,F25.12)') atom_basis%ns(i, 1), "P Exponent :", atom_basis%as(i, 1)
CASE (2)
WRITE (iw, '(T10,I1,A,T40,F25.12)') atom_basis%ns(i, 2), "D Exponent :", atom_basis%as(i, 2)
CASE (3)
WRITE (iw, '(T10,I1,A,T40,F25.12)') atom_basis%ns(i, 3), "F Exponent :", atom_basis%as(i, 3)
END SELECT
END DO
END DO
WRITE (iw, '(" ",79("*"))')
CASE (NUM_BASIS)
CPABORT("")
CASE DEFAULT
CPABORT("")
END SELECT
END SUBROUTINE atom_print_basis
! **************************************************************************************************
!> \brief Print the optimized atomic basis set into a file.
!> \param atom_basis atomic basis set
!> \param wfn ...
!> \par History
!> * 11.2016 revised output format [Matthias Krack]
!> * 11.2011 Slater basis functions [Juerg Hutter]
!> * 03.2011 created [Juerg Hutter]
!> \note The basis set is stored as the file 'OPT_BASIS' inside the current working directory.
!> It may be a good idea, however, to specify the name of this file via some input section.
! **************************************************************************************************
SUBROUTINE atom_print_basis_file(atom_basis, wfn)
TYPE(atom_basis_type) :: atom_basis
REAL(KIND=dp), DIMENSION(:, :, 0:), OPTIONAL :: wfn
INTEGER :: i, im, iw, l
REAL(KIND=dp) :: expzet, prefac, zeta
CALL open_file(file_name="OPT_BASIS", file_status="UNKNOWN", file_action="WRITE", unit_number=iw)
SELECT CASE (atom_basis%basis_type)
CASE (GTO_BASIS)
IF (atom_basis%geometrical) THEN
WRITE (iw, '(/," ",21("*"),A,22("*"))') " Geometrical Gaussian Type Orbitals "
WRITE (iw, '(A,F15.8,T41,A,F15.8)') " Initial exponent: ", atom_basis%aval, &
" Proportionality factor: ", atom_basis%cval
ELSE
WRITE (iw, '(T3,A)') "BASIS_TYPE GAUSSIAN"
END IF
DO l = 0, lmat
IF (atom_basis%nbas(l) > 0) THEN
SELECT CASE (l)
CASE DEFAULT
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"X_EXPONENTS ", (atom_basis%am(i, l), i=1, atom_basis%nbas(l))
CASE (0)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"S_EXPONENTS ", (atom_basis%am(i, 0), i=1, atom_basis%nbas(0))
CASE (1)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"P_EXPONENTS ", (atom_basis%am(i, 1), i=1, atom_basis%nbas(1))
CASE (2)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"D_EXPONENTS ", (atom_basis%am(i, 2), i=1, atom_basis%nbas(2))
CASE (3)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"F_EXPONENTS ", (atom_basis%am(i, 3), i=1, atom_basis%nbas(3))
END SELECT
END IF
END DO
CASE (CGTO_BASIS)
CPABORT("")
CASE (STO_BASIS)
WRITE (iw, '(T3,A)') "BASIS_TYPE SLATER"
DO l = 0, lmat
IF (atom_basis%nbas(l) > 0) THEN
SELECT CASE (l)
CASE DEFAULT
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"X_EXPONENTS ", (atom_basis%as(i, l), i=1, atom_basis%nbas(l))
WRITE (iw, '(T3,A,60I3)') &
"X_QUANTUM_NUMBERS ", (atom_basis%ns(i, l), i=1, atom_basis%nbas(l))
CASE (0)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"S_EXPONENTS ", (atom_basis%as(i, 0), i=1, atom_basis%nbas(0))
WRITE (iw, '(T3,A,60I3)') &
"S_QUANTUM_NUMBERS ", (atom_basis%ns(i, 0), i=1, atom_basis%nbas(0))
CASE (1)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"P_EXPONENTS ", (atom_basis%as(i, 1), i=1, atom_basis%nbas(1))
WRITE (iw, '(T3,A,60I3)') &
"P_QUANTUM_NUMBERS ", (atom_basis%ns(i, 1), i=1, atom_basis%nbas(1))
CASE (2)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"D_EXPONENTS ", (atom_basis%as(i, 2), i=1, atom_basis%nbas(2))
WRITE (iw, '(T3,A,60I3)') &
"D_QUANTUM_NUMBERS ", (atom_basis%ns(i, 2), i=1, atom_basis%nbas(2))
CASE (3)
WRITE (iw, '(T3,A,(T15,F20.8,:," \"))') &
"F_EXPONENTS ", (atom_basis%as(i, 3), i=1, atom_basis%nbas(3))
WRITE (iw, '(T3,A,60I3)') &
"F_QUANTUM_NUMBERS ", (atom_basis%ns(i, 3), i=1, atom_basis%nbas(3))
END SELECT
END IF
END DO
CASE (NUM_BASIS)
CPABORT("")
CASE DEFAULT
CPABORT("")
END SELECT
IF (PRESENT(wfn)) THEN
SELECT CASE (atom_basis%basis_type)
CASE DEFAULT
CASE (GTO_BASIS)
IF (.NOT. atom_basis%geometrical) THEN
WRITE (iw, '(/,T3,A)') "ORBITAL COEFFICENTS (Quickstep normalization)"
im = MIN(6, SIZE(wfn, 2))
DO l = 0, lmat
IF (atom_basis%nbas(l) > 0) THEN
WRITE (iw, '(T3,A,I3)') "L Quantum Number:", l
! Quickstep normalization
expzet = 0.25_dp*REAL(2*l + 3, dp)
prefac = SQRT(SQRT(pi)/2._dp**(l + 2)*dfac(2*l + 1))
DO i = 1, atom_basis%nbas(l)
zeta = (2._dp*atom_basis%am(i, l))**expzet
WRITE (iw, '(T5,F14.8,2x,6F12.8)') atom_basis%am(i, l), wfn(i, 1:im, l)*prefac/zeta
END DO
END IF
END DO
END IF
END SELECT
END IF
CALL close_file(unit_number=iw)
END SUBROUTINE atom_print_basis_file
! **************************************************************************************************
!> \brief Print information about the electronic structure method in use.
!> \param atom information about the atomic kind
!> \param iw output file unit
!> \par History
!> * 09.2015 direct use of the LibXC Fortran interface [Andreas Gloess]
!> * 10.2012 LibXC interface [Fabien Tran]
!> * 02.2010 unrestricted KS and HF methods [Juerg Hutter]
!> * 04.2009 print geometrical Gaussian type orbitals [Juerg Hutter]
!> * 09.2008 new subroutine's prototype; print relativistic methods [Juerg Hutter]
!> * 09.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_method(atom, iw)
TYPE(atom_type) :: atom
INTEGER, INTENT(IN) :: iw
CHARACTER(len=160) :: shortform
CHARACTER(LEN=20) :: tmpStr
CHARACTER(len=:), ALLOCATABLE :: reference
INTEGER :: ifun, il, meth, myfun, reltyp
LOGICAL :: lsd
TYPE(section_vals_type), POINTER :: xc_fun, xc_fun_section, xc_section
NULLIFY (xc_fun, xc_fun_section, xc_section)
meth = atom%method_type
xc_section => atom%xc_section
xc_fun_section => section_vals_get_subs_vals(xc_section, "XC_FUNCTIONAL")
SELECT CASE (meth)
CASE DEFAULT
CPABORT("")
CASE (do_rks_atom)
CALL section_vals_val_get(xc_fun_section, "_SECTION_PARAMETERS_", i_val=myfun)
CASE (do_uks_atom)
CALL section_vals_val_get(xc_fun_section, "_SECTION_PARAMETERS_", i_val=myfun)
CASE (do_rhf_atom)
myfun = xc_none
CASE (do_uhf_atom)
myfun = xc_none
CASE (do_rohf_atom)
myfun = xc_none
END SELECT
SELECT CASE (meth)
CASE DEFAULT
CPABORT("")
CASE (do_rks_atom)
IF (iw > 0) WRITE (iw, fmt="(/,' METHOD | Restricted Kohn-Sham Calculation')")
CASE (do_uks_atom)
IF (iw > 0) WRITE (iw, fmt="(/,' METHOD | Unrestricted Kohn-Sham Calculation')")
CASE (do_rhf_atom)
IF (iw > 0) WRITE (iw, fmt="(/,' METHOD | Restricted Hartree-Fock Calculation')")
CASE (do_uhf_atom)
IF (iw > 0) WRITE (iw, fmt="(/,' METHOD | Unrestricted Hartree-Fock Calculation')")
CASE (do_rohf_atom)
IF (iw > 0) WRITE (iw, fmt="(/,' METHOD | Restricted Open-Shell Kohn-Sham Calculation')")
END SELECT
! zmp
IF (atom%do_zmp) THEN
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Method on atomic radial density')")
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Lambda : ',F5.1)") atom%lambda
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Reading external density : ',A20)") atom%ext_file
IF (atom%dm) THEN
IF (iw > 0) WRITE (iw, fmt="(' ZMP | The file is in the form of a density matrix')")
ELSE
IF (iw > 0) WRITE (iw, fmt="(' ZMP | The file is in the form of a linear density')")
END IF
IF (atom%doread) THEN
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Restarting calculation from ',A20,' file if present')") atom%zmp_restart_file
END IF
ELSE IF (atom%read_vxc) THEN
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Calculating density from external V_xc')")
IF (iw > 0) WRITE (iw, fmt="(' ZMP | Reading external v_xc file : ',A20)") atom%ext_vxc_file
END IF
IF (atom%pp_calc) THEN
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Nonrelativistic Calculation')")
ELSE
reltyp = atom%relativistic
SELECT CASE (reltyp)
CASE DEFAULT
CPABORT("")
CASE (do_nonrel_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Nonrelativistic Calculation')")
CASE (do_zoramp_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using ZORA(MP)')")
CASE (do_sczoramp_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using scaled ZORA(MP)')")
CASE (do_dkh0_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using Douglas-Kroll 0th order')")
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using kietic energy scaling')")
CASE (do_dkh1_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using Douglas-Kroll 1st order')")
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using Foldy-Wouthuysen transformation')")
CASE (do_dkh2_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using Douglas-Kroll 2nd order')")
CASE (do_dkh3_atom)
IF (iw > 0) WRITE (iw, fmt="(' METHOD | Relativistic Calculation using Douglas-Kroll 3rd order')")
END SELECT
END IF
lsd = (meth == do_uks_atom)
IF (myfun /= xc_none) THEN
CALL section_vals_val_get(xc_section, "FUNCTIONAL_ROUTINE", c_val=tmpStr)
IF (iw > 0) WRITE (iw, fmt="(' FUNCTIONAL| ROUTINE=',a)") TRIM(tmpStr)
CALL xc_functionals_expand(xc_fun_section, xc_section)
IF (iw > 0) THEN
ifun = 0
DO
ifun = ifun + 1
xc_fun => section_vals_get_subs_vals2(xc_fun_section, i_section=ifun)
IF (.NOT. ASSOCIATED(xc_fun)) EXIT
IF (libxc_check_existence_in_libxc(xc_fun)) THEN
ALLOCATE (CHARACTER(LEN=libxc_get_reference_length(xc_fun, lsd)) :: reference)
ELSE
ALLOCATE (CHARACTER(LEN=20*default_string_length) :: reference)
END IF
CALL xc_functional_get_info(xc_fun, lsd=lsd, reference=reference, shortform=shortform)
WRITE (iw, fmt="(' FUNCTIONAL| ',a,':')") &
TRIM(xc_fun%section%name)
DO il = 1, LEN_TRIM(reference), 67
WRITE (iw, fmt="(' FUNCTIONAL| ',a67)") reference(il:)
END DO
DEALLOCATE (reference)
END DO
END IF
ELSE
IF (iw > 0) WRITE (iw, fmt="(' FUNCTIONAL| NO EXCHANGE-CORRELATION FUNCTIONAL USED.')")
END IF
END SUBROUTINE atom_print_method
! **************************************************************************************************
!> \brief Print information about the pseudo-potential.
!> \param potential pseudo-potential
!> \param iw output file unit
!> \par History
!> * 05.2017 SGP pseudo-potentials [Juerg Hutter]
!> * 02.2016 pseudo-potential in Quantum Espresso UPF format [Juerg Hutter]
!> * 01.2016 new confinement potential form [Juerg Hutter]
!> * 03.2010 extension of GTH pseudo-potential definition [Juerg Hutter]
!> * 05.2009 GTH pseudo-potential [Juerg Hutter]
!> * 09.2008 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_potential(potential, iw)
TYPE(atom_potential_type) :: potential
INTEGER, INTENT(IN) :: iw
CHARACTER(len=60) :: pline
INTEGER :: i, j, k, l
SELECT CASE (potential%ppot_type)
CASE (no_pseudo)
WRITE (iw, '(/," ",28("*"),A,27("*"))') " All Electron Potential "
CASE (gth_pseudo)
WRITE (iw, '(/," ",29("*"),A,29("*"))') " GTH Pseudopotential "
WRITE (iw, '(T10,A,T76,F5.1)') " Core Charge ", potential%gth_pot%zion
WRITE (iw, '(T10,A,T66,F15.6)') " Rc ", potential%gth_pot%rc
WRITE (pline, '(5F12.6)') (potential%gth_pot%cl(i), i=1, potential%gth_pot%ncl)
WRITE (iw, '(T10,A,T21,A60)') " C1 C2 ... ", ADJUSTR(pline)
IF (potential%gth_pot%lpotextended) THEN
DO k = 1, potential%gth_pot%nexp_lpot
WRITE (iw, '(T10,A,F10.6,T38,A,4F10.6)') " LPot: rc=", potential%gth_pot%alpha_lpot(k), &
"CX=", (potential%gth_pot%cval_lpot(i, k), i=1, potential%gth_pot%nct_lpot(k))
END DO
END IF
IF (potential%gth_pot%nlcc) THEN
DO k = 1, potential%gth_pot%nexp_nlcc
WRITE (iw, '(T10,A,F10.6,T38,A,4F10.6)') " LSDPot: rc=", potential%gth_pot%alpha_nlcc(k), &
"CX=", (potential%gth_pot%cval_nlcc(i, k)*4.0_dp*pi, i=1, potential%gth_pot%nct_nlcc(k))
END DO
END IF
IF (potential%gth_pot%lsdpot) THEN
DO k = 1, potential%gth_pot%nexp_lsd
WRITE (iw, '(T10,A,F10.6,T38,A,4F10.6)') " LSDPot: rc=", potential%gth_pot%alpha_lsd(k), &
"CX=", (potential%gth_pot%cval_lsd(i, k), i=1, potential%gth_pot%nct_lsd(k))
END DO
END IF
DO l = 0, lmat
IF (potential%gth_pot%nl(l) > 0) THEN
WRITE (iw, '(T10,A,T76,I5)') " Angular momentum ", l
WRITE (iw, '(T10,A,T66,F15.6)') " Rcnl ", potential%gth_pot%rcnl(l)
WRITE (iw, '(T10,A,T76,I5)') " Nl ", potential%gth_pot%nl(l)
WRITE (pline, '(5F12.6)') (potential%gth_pot%hnl(1, j, l), j=1, potential%gth_pot%nl(l))
WRITE (iw, '(T10,A,T21,A60)') " Hnl ", ADJUSTR(pline)
DO i = 2, potential%gth_pot%nl(l)
WRITE (pline, '(T21,5F12.6)') (potential%gth_pot%hnl(i, j, l), j=i, potential%gth_pot%nl(l))
WRITE (iw, '(T21,A60)') ADJUSTR(pline)
END DO
END IF
END DO
CASE (upf_pseudo)
WRITE (iw, '(/," ",29("*"),A,29("*"))') " UPF Pseudopotential "
DO k = 1, potential%upf_pot%maxinfo
WRITE (iw, '(A80)') potential%upf_pot%info(k)
END DO
CASE (sgp_pseudo)
WRITE (iw, '(/," ",29("*"),A,29("*"))') " SGP Pseudopotential "
WRITE (iw, '(T10,A,T76,F5.1)') " Core Charge ", potential%sgp_pot%zion
CASE (ecp_pseudo)
WRITE (iw, '(/," ",26("*"),A,27("*"))') " Effective Core Potential "
WRITE (iw, '(T10,A,T76,F5.1)') " Core Charge ", potential%ecp_pot%zion
DO k = 1, potential%ecp_pot%nloc
IF (k == 1) THEN
WRITE (iw, '(T10,A,T40,I3,T49,2F16.8)') " Local Potential ", potential%ecp_pot%nrloc(k), &
potential%ecp_pot%bloc(k), potential%ecp_pot%aloc(k)
ELSE
WRITE (iw, '(T40,I3,T49,2F16.8)') potential%ecp_pot%nrloc(k), &
potential%ecp_pot%bloc(k), potential%ecp_pot%aloc(k)
END IF
END DO
DO l = 0, potential%ecp_pot%lmax
WRITE (iw, '(T10,A,I3)') " ECP l-value ", l
DO k = 1, potential%ecp_pot%npot(l)
WRITE (iw, '(T40,I3,T49,2F16.8)') potential%ecp_pot%nrpot(k, l), &
potential%ecp_pot%bpot(k, l), potential%ecp_pot%apot(k, l)
END DO
END DO
CASE DEFAULT
CPABORT("")
END SELECT
IF (potential%confinement) THEN
IF (potential%conf_type == poly_conf) THEN
WRITE (iw, '(/,T10,A,T51,F12.6," * (R /",F6.2,")**",F6.2)') &
" Confinement Potential ", potential%acon, potential%rcon, potential%scon
ELSE IF (potential%conf_type == barrier_conf) THEN
WRITE (iw, '(/,T10,A)') " Confinement Potential s*F[(r-ron)/w] "
WRITE (iw, '(T57,A,F12.6,A)') "s =", potential%acon, " Ha"
WRITE (iw, '(T57,A,F12.6,A)') "w =", potential%rcon, " Bohr"
WRITE (iw, '(T57,A,F12.6,A)') "ron =", potential%scon, " Bohr"
ELSE
CPABORT("")
END IF
ELSE
WRITE (iw, '(/,T10,A)') " No Confinement Potential is applied "
END IF
WRITE (iw, '(" ",79("*"))')
END SUBROUTINE atom_print_potential
! **************************************************************************************************
!> \brief Print GTH pseudo-potential parameters.
!> \param gthpot pseudo-potential
!> \param iunit output file unit
!> \par History
!> * 09.2012 created [Juerg Hutter]
!> \note The pseudo-potential is written into the 'iunit' file unit or as the file 'GTH-PARAMETER'
!> inside the current working directory if the I/O unit is not given explicitly.
! **************************************************************************************************
SUBROUTINE atom_write_pseudo_param(gthpot, iunit)
TYPE(atom_gthpot_type), INTENT(INOUT) :: gthpot
INTEGER, INTENT(IN), OPTIONAL :: iunit
INTEGER :: i, iw, j, k, n
IF (PRESENT(iunit)) THEN
iw = iunit
ELSE
CALL open_file(file_name="GTH-PARAMETER", file_status="UNKNOWN", file_action="WRITE", unit_number=iw)
END IF
WRITE (iw, '(A2,A)') gthpot%symbol, ADJUSTL(TRIM(gthpot%pname))
WRITE (iw, '(4I5)') gthpot%econf(0:3)
WRITE (iw, '(F20.14,I8,5F20.14)') gthpot%rc, gthpot%ncl, (gthpot%cl(i), i=1, gthpot%ncl)
IF (gthpot%lpotextended) THEN
WRITE (iw, '(A,I5)') " LPOT", gthpot%nexp_lpot
DO i = 1, gthpot%nexp_lpot
WRITE (iw, '(F20.14,I8,5F20.14)') gthpot%alpha_lpot(i), gthpot%nct_lpot(i), &
(gthpot%cval_lpot(j, i), j=1, gthpot%nct_lpot(i))
END DO
END IF
IF (gthpot%lsdpot) THEN
WRITE (iw, '(A,I5)') " LSD ", gthpot%nexp_lsd
DO i = 1, gthpot%nexp_lsd
WRITE (iw, '(F20.14,I8,5F20.14)') gthpot%alpha_lsd(i), gthpot%nct_lsd(i), &
(gthpot%cval_lsd(j, i), j=1, gthpot%nct_lsd(i))
END DO
END IF
IF (gthpot%nlcc) THEN
WRITE (iw, '(A,I5)') " NLCC ", gthpot%nexp_nlcc
DO i = 1, gthpot%nexp_nlcc
WRITE (iw, '(F20.14,I8,5F20.14)') gthpot%alpha_nlcc(i), gthpot%nct_nlcc(i), &
(gthpot%cval_nlcc(j, i)*4.0_dp*pi, j=1, gthpot%nct_nlcc(i))
END DO
END IF
n = 0
DO i = lmat, 0, -1
IF (gthpot%nl(i) > 0) THEN
n = i + 1
EXIT
END IF
END DO
WRITE (iw, '(I8)') n
DO i = 0, n - 1
WRITE (iw, '(F20.14,I8,5F20.14)') gthpot%rcnl(i), gthpot%nl(i), (gthpot%hnl(1, k, i), k=1, gthpot%nl(i))
SELECT CASE (gthpot%nl(i))
CASE (2)
WRITE (iw, '(T49,F20.14)') gthpot%hnl(2, 2, i)
CASE (3)
WRITE (iw, '(T49,2F20.14)') gthpot%hnl(2, 2, i), gthpot%hnl(2, 3, i)
WRITE (iw, '(T69,F20.14)') gthpot%hnl(3, 3, i)
CASE DEFAULT
DO j = 2, gthpot%nl(i)
WRITE (iw, '(T29,5F20.14)') (gthpot%hnl(j, k, i), k=j, gthpot%nl(i))
END DO
END SELECT
END DO
IF (.NOT. PRESENT(iunit)) CALL close_file(unit_number=iw)
END SUBROUTINE atom_write_pseudo_param
! **************************************************************************************************
!> \brief Print atomic orbitals.
!> \param atom information about the atomic kind
!> \param iw output file unit
!> \par History
!> * 04.2013 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_orbitals(atom, iw)
TYPE(atom_type), POINTER :: atom
INTEGER, INTENT(IN) :: iw
SELECT CASE (atom%method_type)
CASE DEFAULT
CPABORT("")
CASE (do_rks_atom)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfn, "", iw)
CASE (do_uks_atom)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfna, "Alpha", iw)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfnb, "Beta", iw)
CASE (do_rhf_atom)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfn, "", iw)
CASE (do_uhf_atom)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfna, "Alpha", iw)
CALL atom_print_orbitals_helper(atom, atom%orbitals%wfnb, "Beta", iw)
CASE (do_rohf_atom)
CPABORT("")
END SELECT
END SUBROUTINE atom_print_orbitals
! **************************************************************************************************
!> \brief Print atomic orbitals of the given spin.
!> \param atom information about the atomic kind
!> \param wfn atomic orbitals
!> \param description description string
!> \param iw output file unit
!> \par History
!> * 04.2013 created [Juerg Hutter]
! **************************************************************************************************
SUBROUTINE atom_print_orbitals_helper(atom, wfn, description, iw)
TYPE(atom_type), POINTER :: atom
REAL(KIND=dp), DIMENSION(:, :, 0:), INTENT(INOUT) :: wfn
CHARACTER(len=*), INTENT(IN) :: description
INTEGER, INTENT(IN) :: iw
INTEGER :: b, l, maxl, nb, nv, v
WRITE (iw, '(/,A,A,A)') " Atomic orbital expansion coefficients [", description, "]"
maxl = atom%state%maxl_calc
DO l = 0, maxl
nb = atom%basis%nbas(l)
nv = atom%state%maxn_calc(l)
IF (nb > 0 .AND. nv > 0) THEN
nv = MIN(nv, SIZE(wfn, 2))
DO v = 1, nv
WRITE (iw, '(/," ORBITAL L = ",I1," State = ",I3)') l, v
DO b = 1, nb
WRITE (iw, '(" ",ES23.15)') wfn(b, v, l)
END DO
END DO
END IF
END DO
END SUBROUTINE atom_print_orbitals_helper
END MODULE atom_output