forked from SpongebBob/Finetune-ChatGLM2-6B
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
376 lines (327 loc) · 15.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
os.environ["WANDB_DISABLED"] = "true"
import sys
import json
import numpy as np
from datasets import load_dataset
import jieba
from rouge_chinese import Rouge
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
import torch
import copy
import transformers
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainingArguments,
set_seed,
)
from trainer_seq2seq import Seq2SeqTrainer
from arguments import ModelArguments, DataTrainingArguments
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
# datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Load dataset
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# Load pretrained model and tokenizer
config = AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
config.pre_seq_len = model_args.pre_seq_len
config.prefix_projection = model_args.prefix_projection
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_args.model_name_or_path, config=config, trust_remote_code=True)
if model_args.quantization_bit is not None:
print(f"Quantized to {model_args.quantization_bit} bit")
model = model.quantize(model_args.quantization_bit)
else:
# Finetune
model = model.float()
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Get the column names for input/target.
prompt_column = data_args.prompt_column
def preprocess_function(examples):
max_seq_length = data_args.max_length
model_inputs = {
"input_ids": [],
"labels": [],
}
filter_nums = 0
for i in range(len(examples[prompt_column])):
conversation = ''
input_ids = []
labels = []
eos_id = tokenizer.eos_token_id
turn_idx = 0
for sentence in examples[prompt_column][i]:
sentence_from = sentence["from"].lower()
sentence_value = '[Round {}]\n\n问:'.format(turn_idx) + sentence["value"] + '\n\n答:' if sentence_from == 'human' else sentence["value"]+'\n\n'
conversation += sentence_value
sentence_ids = tokenizer.encode(sentence_value, add_special_tokens=False)
label = copy.deepcopy(sentence_ids) if sentence_from != 'human' else [-100] * len(sentence_ids)
input_ids += sentence_ids
labels += label
if sentence_from != 'human':
input_ids += [eos_id]
labels += [eos_id]
turn_idx += 1
input_ids = tokenizer.encode('') + input_ids #add gmask bos
labels = [-100] * 2 + labels# #add padding
pad_len = max_seq_length - len(input_ids)
input_ids = input_ids + [eos_id] * pad_len
labels = labels + [-100] * pad_len
if not any(x > -100 for x in labels[2:]) or "\n\n答" not in conversation:
filter_nums += 1
continue
if len(input_ids) != max_seq_length or len(labels) != max_seq_length:
filter_nums += 1
continue
model_inputs["input_ids"].append(input_ids)
model_inputs["labels"].append(labels)
#print('filter_nums {} filter_ratio {} sum {}'.format(filter_nums, filter_nums/len(examples[prompt_column]),len(examples[prompt_column])))
return model_inputs
def print_dataset_example(example):
print("input_ids",example["input_ids"])
print("inputs", tokenizer.decode(example["input_ids"]))
print("label_ids", example["labels"])
print("labels", tokenizer.decode([i for i in example["labels"] if i != -100]))
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
print_dataset_example(train_dataset[0])
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
print_dataset_example(eval_dataset[0])
if training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
print_dataset_example(predict_dataset[0])
# Data collator
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=-100,
pad_to_multiple_of=None,
padding=False
)
# Metric
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
score_dict = {
"rouge-1": [],
"rouge-2": [],
"rouge-l": [],
"bleu-4": []
}
for pred, label in zip(decoded_preds, decoded_labels):
hypothesis = list(jieba.cut(pred))
reference = list(jieba.cut(label))
rouge = Rouge()
scores = rouge.get_scores(' '.join(hypothesis) , ' '.join(reference))
result = scores[0]
for k, v in result.items():
score_dict[k].append(round(v["f"] * 100, 4))
bleu_score = sentence_bleu([list(label)], list(pred), smoothing_function=SmoothingFunction().method3)
score_dict["bleu-4"].append(round(bleu_score * 100, 4))
for k, v in score_dict.items():
score_dict[k] = float(np.mean(v))
return score_dict
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.max_length
)
training_args.generation_num_beams = (
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
)
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
save_prefixencoder=False
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
# elif last_checkpoint is not None:
# checkpoint = last_checkpoint
model.gradient_checkpointing_enable()
model.enable_input_require_grads()
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
max_seq_length = data_args.max_length
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(metric_key_prefix="eval", do_sample=True, top_p=0.7, max_length=max_seq_length, temperature=0.95)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict", max_length=max_seq_length, do_sample=True, top_p=0.7, temperature=0.95)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
labels = tokenizer.batch_decode(
predict_results.label_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
labels = [label.strip() for label in labels]
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w", encoding="utf-8") as writer:
for p, l in zip(predictions, labels):
res = json.dumps({"labels": l, "predict": p}, ensure_ascii=False)
writer.write(f"{res}\n")
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()